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Abstract. The Web is a continuously evolving environment, 
since its content is updated on a regular basis. As a result, the 
traditional usage-based approach to generate recommendations 
that takes as input the navigation paths recorded on the web page 
level, is not as effective. Moreover, most of the content available 
online is either explicitly or implicitly characterized by a set of 
categories organized in a taxonomy. Using this information, the 
page-level navigation patterns can be generalized to a higher, 
aggregate level. In this direction, we present the Frequent 
Generalized Pattern (FGP) algorithm. FGP takes as input the 
transaction data and a hierarchy of categories that characterize 
them, and produces generalized association rules that contain 
transaction items and/or item categories. The algorithm can be 
applied to the log files of a typical web site; however, it can be 
more helpful in a Web 2.0 application where content is 
semantically annotated. Given a transaction database and a 
hierarchical organization of the browsed items, the algorithm 
generates frequent itemsets comprising of both web pages and 
categories. The results can be used to generate association rules 
and subsequently recommendations for the users. We also 
introduce FGP+, which is an extension of the FPG algorithm and 
can take as input more complex structures than taxonomies. This 
extension addresses the unique characteristics of Web 2.0 sites 
such as feed aggregators or digital libraries. In such sites, the 
topic or tag information attached in a page hardly forms a 
taxonomy. We experimentally evaluate the proposed algorithms 
using web log data collected from a newspaper web site. 

1. INTRODUCTION 
The role of recommendations is very important in everyday 
transactions. When buying a product, or reading a newspaper 
article, one would like to have recommendations on related 
items. To achieve this, recommendation engines first build a 
predictive model, by discovering itemsets or item sequences with 
high support among users. Recommendations are subsequently 
generated by matching new transaction patterns to the predictive 
model. Most current approaches in web personalization consider 
that a web site consists of a finite number of web pages and build 
their predictive models based on this assumption (Mobasher, 
2007). The Web, however, is a continuously evolving 
environment and this assumption does no longer hold. News 
portals are typical examples of this situation since they update 
their content on a regular basis. As a result, the traditional usage-
based approach that takes as input the navigation paths recorded 
on the web page level is not as effective. Since most predictive 
models are based on frequent itemsets, the more recent a page is, 
the more difficult it is to become part of the recommendation set; 

at the same time, such pages are more likely to be of interest for 
the average user. This problem can be addressed by generalizing 
the page-level navigation patterns to a higher, aggregate level 
(Eirinaki et. al. 2003; Mobasher, 2007).  

In this work, we present the FGP algorithm, to address the 
aforementioned problem. The FGP algorithm is in essence the 
result of the modification and combination of two algorithms 
that have been proposed in different contexts. The first one, FP-
Growth (Han et. al. 2004), is given a database of user 
transactions that comprise one or more unordered items 
(itemsets) and a minimum support threshold. The algorithm 
processes the transaction database and mines the complete set of 
frequent itemsets (whose frequency surpasses the threshold). FP-
Growth considers the support of each item in the set to be equal 
to one. In this work, we extend the algorithm so that it assigns 
different weights to every item in the set depending on its 
importance in the transaction. We should note that the FP-
Growth algorithm does not consider any relation between items 
in the database. This, however, is not the case in the web, where 
items in a web site are (conceptually) hierarchically organized. 
This intrinsic characteristic of the web can be tackled by the 
second algorithm, GP-Close (Jiang and Tan, 2006; Jiang et. al., 
2007). GP-Close considers a hierarchical organization of all 
items in the transaction database and uses this information to 
produce generalized patterns. The two algorithms are very 
efficient and solve many of the problems of pattern mining, such 
as the costly generation of candidate sets and the over-
generalization of rules.  

The FGP algorithm works efficiently in the case of web sites 
that have a well-defined underlying hierarchy of topics, such as 
news portals. Many Web 2.0 sites, however, present a more 
complex underlying structure. For instance, feed aggregators 
summarize and present content that is collected from multiple 
sources. In such sites, the content is not necessarily categorized 
into predefined categories (Inform 2007), being described by 
user-defined tags instead. This collaborative tagging process 
results into folksonomies (Voss 2007; P. Heymann and H. 
Garcia-Molina 2006) that differentiate from the traditional top-
down taxonomies. The more complex structure of folksonomies, 
the use of plurals, the synonym polysemy and specificity of 
tagging raise new issues for the recommendation engines. In this 
context, we propose an extension of the FGP algorithm, named 
FGP+ that takes a more composite topic hierarchy as input, and 
supports multiple category assignments per topic. 

In brief, the contributions of our work are outlined in what 
follows: 



• We modify and combine the forces of FP-Growth and 
GP-Close in one efficient generalized pattern mining 
algorithm, named FGP which: 

o extends the frequent-pattern tree, the main structure of 
the FP-Growth algorithm, to include weight 
information about items, thus producing a weighted 
FP-Tree (WFP-Tree)  

o addresses the problem of continuously updated content 
by using the WFP-Tree and the taxonomic information 
related to the web site's content as input to GP-Close, 
and generates generalized recommendations 

• We present an extension of FGP, named FGP+ that 
supports an extended taxonomy of topic categories 
and/or multiple category assignments per item. The 
extended algorithm directly addresses the special 
characteristics of social networking applications. 

• We experimentally evaluate our approach using data 
collected from a newspaper's web site.  

The paper is organized as follows. First, we provide an 
overview of the related research in the area of pattern and 
association rule mining, as well as in the area of personalizing 
news sites. We briefly describe the fundamentals of the FP-
Growth and GP-Close algorithms, and we present the details of 
the FGP algorithm, in Sections 3 and 4 respectively. We 
motivate the need for an extension of the basic algorithm, and 
convey our solution in Section 5. In Section 6, we discuss our 
implementation and present the experimental results. We 
conclude with our plans for future work in Section 7.  

2. RELATED WORK 
There exist numerous approaches that address the problem of 
personalizing a web site. An extensive overview can be found in 
(Mobasher, 2007). In this paper, we overview those that are 
more similar to ours with regards to: a) the personalization of 
news sites and b) the abstraction of the generated patterns using 
a hierarchy. 

Both research projects (Antonellis et. al., 2006; Banos et. al., 
2006; Katakis et. al. 2008, Gabrilovich et. al., 2004) and 
commercial sites, such as Spotback (http://spotback.com) and 
Topix (http://www.topix.net), have attempted to address the need 
of personalizing the content of a news site according to users' 
preferences. Most of those approaches, however, are based on 
the preference information explicitly provided by the users. 
However, users' interests change from time to time. In the 
existence of this concept-drift issue (Tsymbal, 2004; Katakis et. 
al., 2008), either web users should continuously update their 
preferences, or the system will eventually fail to present useful, 
personalized recommendations. We can see that this is a 
situation analogous to the cold-start problem, which appears 
when a system should make predictions in the absence of any 
transaction history. The cold-start problem has been addressed 
mainly in the context of collaborative filtering systems (Lam et. 
al., 2008; Schein et. al., 2002), by creating hybrid recommender 
systems that take into account both the content of the site and the 
user ratings or profiles. When there is not adequate user-based 
information, similarities between the content can be used to 
make predictions.  

The idea of integrating the content in the recommendation 
process has also been addressed by generalizing the page-level 
navigation patterns to a higher, aggregate level, with the aid of a 

topic hierarchy. In a previous work, we have proposed the 
mapping of all user sessions to the topics of a hierarchy (Eirinaki 
et. al., 2003). Those generalized sessions were then used as input 
to the Apriori algorithm (Agrawal and Srikant, 1994), in order to 
generate category-based recommendations. Oberle et. al. (2003) 
proposed a similar framework for semantic web sites, where the 
content was annotated using an ontology. This framework 
focused on web mining instead of personalization tasks. In 
(Middleton et. al., 2004) an approach focusing on recommending 
academic research papers was proposed. The authors mapped the 
user profiles as well as the research papers to ontology terms, 
and used those data as input to a collaborative filtering 
recommender.  

Considering several shortcomings of collaborative filtering, 
such as data sparsity and lack of scalability (Mobasher, 2007), 
we opted for an association rule mining algorithm as the core of 
the personalization process. Compared to Apriori or its 
extensions, namely, AprioriTid and AprioriHybrid (Agrawal and 
Srikant, 1994), the FP-Growth algorithm is more efficient in that 
it does not generate candidate itemsets, but adopts a pattern-
fragment growth method instead. Moreover, we use the topic 
hierarchy as an inherent component of our algorithm, and adapt 
the GP-Close mechanism in order to produce generalized 
recommendations taking as input hierarchical, as well as 
complex taxonomies. In contrast to existing techniques that 
recommend either pages or categories, FGP and its extension 
generate frequent itemsets comprising of both of them. Thus, it 
supports the generation of recommendations that include a 
combination of pages and page categories. 

3. FP-GROWTH AND GP-CLOSE  
3.1. The FP-Growth algorithm 
The details of the FP-Growth algorithm can be found in the 
related bibliography (Han et. al. 2004). In what follows we 
present an overview of the algorithm using a running example. 
This same example is employed in order to demonstrate the 
differences between FP-Growth and our algorithm, FGP. 

In the first step, FP-Growth scans the transaction database, 
finds all frequent items (minimum support is 3 in our example) 
and orders them in descending frequency order. In a second 
database scan, the FP-Tree is constructed. Each transaction is 
mapped to a path in the FP-Tree. For the items already in the 
tree, the count of the respective nodes in the path is updated, 
whereas new nodes are added for the remaining items. For items 
belonging to more than one frequent itemsets, all their 
appearances in the tree are linked. An index table containing all 
frequent items sorted in descending global frequency order, 
points to the first appearance of each item in the FP-Tree. The 
FP-Tree resulting from the transaction database of Table 1 is 
shown in Figure 1. 

 
TID Itemset Ordered frequent 

items (min freq=3) 
100 f, a, c, a, d, g, i, a, m, c, p f, c, a, m, p 
200 a, b, c, f, c, l, a, m, o f, c, a, b, m 
300 b, f, h, j, o, f f, b 
400 b, c, k, s, p, c, b c, b, p 
500 a, c, f, c, e, l, f, p, m, n, a f, c, a, m, p 

Table 1. A sample transaction database.

http://spotback.com/�
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Figure 1. The steps of constructing an FP-Tree. 

 

 
Figure 2. The taxonomy of items 

As proven by Han et al. (2004), the FP-Tree is adequate for 
mining frequent patterns and can replace the transaction 
database. In order to compute the support of a k-itemset, FP-
Growth scans the tree in order to find the less frequent items in 
the set. The items in the path from the root to the item under 
examination form the conditional pattern base of the item and 
their support equals the support of the item under examination 
(count adjustment). Table 2 contains the conditional pattern base 
for the FP-Tree of Figure 1. 

Item Conditional pattern base Conditional FP-Tree 
p {fcam:2, cb:1} {c:3}|p 
m {fca:2, fcab:1} {f:3, c:3, a:3}|m 
b {fca:1, f:1, c:1} {} 
a {fc:3} {f:3, c:3}|a 
c {f:3} {f:3}|c 
f {} {} 

Table 2. The conditional pattern base and FP-tree. 

 
3.2. The GP-Close algorithm 
The GP-Close algorithm takes as input a transaction database DB 
and a taxonomy T, containing all items of DB. Using a minimum 
support threshold, it generates a tree called closure enumeration 
tree (CET) that contains all the generalized frequent itemsets. 
The children of a node in the CET expand their parent itemset by 
adding one item. 

 The first step of the algorithm is to locate all frequent 1-
itemsets and generate all their frequent generalizations by 
looking up to T. After sorting them in a support increasing 
manner, it gradually expands them to n-itemsets, by combining 
smaller sets and updating support count. Two pruning techniques 
prevent from exploring unnecessary combinations: the Subtree 

pruning and the Child-Closure pruning. The details of the 
algorithm and an explanation of the pruning techniques are 
available in (Jiang and Tan, 2006). 

4. The FGP algorithm  
In order to demonstrate how the FGP algorithm functions we use 
the running example introduced in Section 3. Consider that all 
items in the transaction database of Table 1 are articles in a news 
site and that the taxonomy of topics depicted in Figure 2 exists 
for this site (numbers correspond to topic ids, and letters to 
article ids). Without loss of generality we assume that each 
article belongs to a single topic. We show how the algorithm is 
extended to handle multiple category assignments in Section 5.  

4.1. Pre-processing: item weighting  
We should point out that the information we store in the FP-Tree 
differs from that of the original implementation. In the original 
paper (Han et al. 2004), each transaction identifier (TID) stores 
only one occurrence for each node. However, in the case of web 
log files, a user might visit a web page more than once during a 
session. Repetitiveness signifies the importance of a page for a 
specific user, thus the input format is modified to include 
<pageID, weight, support> triplets, instead of merely pageID 
information. 

Although a page’s importance in a session depends on the 
number of repetitive visits, its importance in the database is 
related to the number of distinct sessions it appears in. Thus, 
analogously to term weighting in document collections (i.e. 
tf*idf), we consider the weight of a page in a session to be the 
number of its appearances in the session divided by the total 
number of page hits in the session (page frequency) and the 



support of a page to be the number of sessions that contain this 
page (inverse session frequency). 

TID Session items (PID, hits) Total 
hits/session 

100 (a,3), (c,2), (f,1), (d,1), (g,1), (i,1), 
(m,1), (p,1) 

11 

200 (a,2), (c,2), (b,1), (f,1), (l,1), (m,1), 
(o,1) 

9 

300 (f,2), (b,1), (h,1), (j,1), (o,1) 6 
400 (b,2), (c,2), (k,1), (s,1), (p,1) 7 
500 (a,2), (f,2), (c,2), (e,1), (l,1), (p,1), 

(m,1), (n,1) 
11 

Table 3. The web log entries grouped by session 

The result of this processing for Table 1 is depicted in Table 3, 
which is consequently mapped to the WFP-Tree.  

4.2. The FGP Algorithm 
The FGP algorithm takes as input a transaction database (as in 
Table 3) and a taxonomy (as in Figure 2) and constructs a set of 
generalized association rules as follows: 

1) Scan the transaction database and construct the WFP-Tree 
2) Find frequent 1-itemsets using the WFP-Tree 
3) Create frequent generalized 1-itemsets using the hierarchy 

a) Sort 1-itemsets in increasing support order 
b) Prune Children: While creating the generalization tree 

prune 1-item generalizations that have support equal to a 
frequent 1-itemset already in the tree  

4) Combine 1-itemsets to generate the complete generalized 
itemsets tree. 
a) Prune subtrees: If a n-itemset A can be subsumed by an 

identified k-itemset B already in the tree with n⊂ k and 
support(A)=support(B) then A and its corresponding 
subtree is pruned. 

 
In what follows, we demonstrate the implementation of the FGP 
algorithm on the WFP-Tree and put light on the details of 
support counting, tree generation and pruning, using the running 
example introduced before. 

4.2.1 Construction of the WFP-Tree  
In order to construct the WFP-Tree, the transaction database is 
parsed and the support and weight for each individual page in a 
transaction is calculated. The algorithm then aggregates the 
weights of the remaining page ids and stores a reference to the 
header table. The transactions are stored in decreasing weight 
order. The final result for the database in Table 3 is depicted in 
Figure 3. The WFP-Tree can replace the original transaction 
database in the remaining steps of the algorithm.   

4.2.2 Discovering frequent 1-itemsets and their generalizations  
The header table, which accompanies the WFP-Tree, contains a 
reference to every page in the tree. This table, along with the 
taxonomy, is used as input in order to find frequent 1-itemsets 
and produce the corresponding frequent generalized 1-itemsets. 
These itemsets are, in essence, the frequently visited categories 
in the database. 
 Since categories correspond to more than one page, in order 
to find the total weight for each category (internal node in the 
taxonomy tree), FGP finds all the corresponding pages (leaf 

nodes) in the taxonomy tree. It subsequently processes the index 
file, from bottom to top, in order to locate all the appearances of 
the leaf nodes in the WFP-Tree and sum their weights.  

 
Figure 3. The Weighted FP-Tree 

For computing the support of a topic (i.e. the number of 
transactions that contain at least one page from this topic), FGP 
examines all appearances of the corresponding pages in the 
WFP-Tree. The transactions that contain many pages from the 
same topic are counted only once in the support of the latter.  

For example, the support for category 11 is computed based 
on pages j, b and a. First the algorithm aggregates the 
appearances of j (1), which is lower in the header table, then of b 
(1+1 + 1-1, due to j) and consequently those of a (3-1 since b has 
been added). The total support for category 11 is consequently 5, 
which corresponds to the number of transactions that contain at 
least one of {j, b, a}. The weight of 11 is 1.42, which is the sum 
of the weights of j, b and a. 

4.2.3 Pruning 1-itemset generalizations 
In this step all 1-itemsets and their generalizations that do not 
have high support (e.g. support < 3 in our example) are being 
pruned.  

Furthermore, in order to avoid the combinatorial explosion of 
the GP-Close when it searches for all frequent n-itemsets, FGP 
also prunes those frequent 1-item generalizations that have the 
same support as one of their specializations. For example, the 
support of category 37, comprising of pages f and g is 4, which 
equals to the support of f. As a result, the generalization of 37 is 
pruned from the final tree and so do all the combinations of 37. 

In order to prune the frequent 1-item generalizations the 
algorithm sorts all frequent 1-itemsets in increasing support 
order. If a generalization has the same support with one of its 
specializations, then it is pruned from the closure enumeration 
tree. The first level of the tree containing the frequent 
generalized 1-itemsets is shown in Figure 4. 

 



 
Figure 4. Frequent generalized 1-itemsets  

 

 
Figure 5. Creating the 2-itemsets for the first 1-itemset 

 
Figure 6. Expansion of the first 1-itemset and subtree pruning 

 
4.2.4 Discovering frequent k-itemsets  
FGP incrementally combines the frequent 1-itemsets to generate 
larger sets. After computing their support and weight, the sets 
that do not meet the minimum support requirements are pruned. 
The support for the itemset K is computed over the WFP-Tree as 
follows: 

Suppose that Lz is the set of all leaf nodes for item z. If z is a 
page then Lz={z}. 

 

1.construct }{ zLLS = : Kz∈∀  supportK=0 

2.for LSL ∈1
, the first set of pages in LS 

3. 1Li∈∀ find ALLi : all appearances of i  in WFP-Tree 

4. ALLx ii ∈∀  if contain(subnodes(ix) ,LS-L1)  

    then supportK=supportK+supportlast 
 

where the method contain() parses the list of subnodes of ix 
until at least a page from  all the sets in (LS-L1) is found, and 
supportlast is the support of the last page checked. If  the end 
of a subnodes list has been reached without finding a page for 
every set then supportlast=0. 

To provide an example, we calculate the support of K={f, 24}. 
We first construct LS={{f},{p,l}}. We check all appearances of f 
and search for either p or l in the sub-node lists. The support for 

K is 1 (the support of left shaded l in Figure 3) + 2 (the support 
of the leftmost occurrence of p in the WFP-tree) + 0 (the 
rightmost f does not contain p or l in its node list). A support of 3 
is above the minimum threshold in our example, so {f,24} is a 
frequent 2-itemset. The weight of this itemset is the aggregate of 
the weights of all WFP-Tree nodes involved in the support 
counting, which means f and l in the leftmost branch (0.38+0.11) 
and p and l (0.18+0.09) in the second leftmost sub-branch 
(which shares f as an ancestor). The total weight for K is 0.76. 

4.2.5 Pruning redundant subtrees 
It is obvious that certain combinations will be pruned due to 
insufficient support. For example, a scan in the WFP-Tree of 
Figure 3 gives to {m,p} a support of 2, which is below the 
specified threshold. Thus, {m,p} and its subtree are directly 
pruned. All the 2-itemsets generated from {m} are listed in 
Figure 5.  

A second pruning strategy is applied in this step. According to 
this, when a k-itemset has equal support to a (k+1)-itemset and is 
a subset of this itemset then it is a subsumed one and can be 
pruned. For example, the shaded node a in Figure 5 is pruned. 
This strategy further reduces the possible combinations than 
need to be checked in the next expansion step. 

 
 



 

Figure 7. The modified taxonomy of Figure 2, in which it is allowed for a node to have more than one parents. 
 
 
 
The complete expansion of the first 1-itemset results in 

pruning most of the n-itemsets created (n>1). Figure 6 illustrates 
the result of this expansion, where all shaded nodes are pruned. 
Expansion continues with the remaining 1-itemsets.  

When the tree of sets cannot be further expanded, each node 
in the tree is exported as a frequent k-itemset, which can be used 
to generate recommendations. For example, similarly to 
association rules-based recommendations, the recommender 
system can find the k-itemset that is more similar to the current 
user’s navigation, by comparing the k-1 items (pages or 
categories) to the current visit. The system can then recommend 
the k-th item, if it is a page (e.g. a news article), or the most 
popular/recent pages belonging to the k-th item, if it is a 
category. 

5. The FGP+ algorithm  
The FGP algorithm can be used for generating recommendations 
in sites where the categories are organized in a hierarchy and 
each page is characterized by a single category. However, in the 
case of feed aggregators or digital library mediators, the 
underlying connectivity of categories is more complex (i.e. 
taxonomies are enhanced with "related category" links and 
categories have multiple direct ancestors) and pages (or items in 
general) are assigned to multiple categories. In what follows, we 
propose FGP+, which is an extension of the FGP algorithm that 
addresses the aforementioned issues.  

 
5.1 Major differences between a newspaper site and an 
aggregator 
In the newspaper world, things are quite simple: there is a 
collection of articles, each one belonging to a single category 
only, and a hierarchy of categories, strictly defined by the 
administrator so that every node has one parent at most. 
Nevertheless this is not the case in Web 2.0 sites where both the 
content and the category “tagging” is user-controlled. Even when 
the users select from a list of predefined tags to assign to their 
articles (e.g. blog posts), they may choose more than one per 
item. Moreover those tags may belong to inner categories of the 
taxonomy (e.g. page i in Figure 7, which is assigned to 
categories 2 and 13)   

In several cases the tags assigned to items are different but 
share similar meaning. Such related or synonym categories can 
be shown in the taxonomy with horizontal relations (e.g. the 
relation between categories 3 and 17 in Figure 7). This implies 
that we need a method to map words to their synonyms in the 
taxonomy.  
 
5.2 Principal extensions to the FGP algorithm 

The modifications in the taxonomy do not affect the original 
transaction database and the structure of the WFP-Tree. The 
taxonomy tree, however, has to be enhanced with additional 
relations allowing  each node to have more than one parent. Thus 
a taxonomy graph should be created, that will maintain its 
directed acyclic nature. Additionally, each category can have a 
set of synonyms associated with it, in order for the mining 
algorithm to address cases where different users describe the 
same content using different category tags. 

The construction of the extended tree structure and especially 
the computation of support and weight for a composite itemset, 
comprising both pages and categories, is not a straightforward 
task. In fact, even in the case when we consider no “related 
topic” edges for the taxonomy graph, the latter should be 
constructed very cautiously so as to take into account multiple 
parent assignments for the same internal or leaf node.  

Moreover, when we further extend our data structure, 
allowing each node to contain a list of synonyms associated with 
it, things become really challenging. For example, Figure 8 
presents a taxonomy enhanced with synonymous/related 
categories information. Furthermore, both leaf and inner 
categories have instances (pages, denoted with letters).  

In what follows, we discuss the different situations that need 
to be handled during the construction of the extended closure 
enumeration tree and the actions that are taken for the 
computation of support and weight (the relations between nodes 
are depicted in the taxonomy graph of Figure 8): 

 



 

 Figure 8. The taxonomy graph now supports a list of synonyms 
for each node, whereas the instances (words from actual tags) do 
not necessarily belong to the same level. 
 
• Compute the support and weight of categories containing 

items that have a parent/child relationship (e.g. {18, 182} in 
Figure 8). In this case we can either, a) ignore the subclass 
relation in the creation of the closure enumeration tree, i.e. 
regard the two categories as unrelated, or b) consider that 
either the parent or the child is supported when an instance of 
the child category is found (e.g. k). In our implementation, 
we follow the first alternative and ignore the existence of the 
child nodes, as far as the parent one is concerned when 
computing the support and weight. For example, the support 
and weight computation for the pair {18, 182} of the closure 
enumeration tree of Figure 8 occur independently for the two 
nodes, taking the sessions containing p and m, or p and k but 
not those that contain m and k but not p, into account. 

• Handle nodes having descendant/ancestor relationships (e.g. 
{1, 111} in Figure 8), which is in essence a generalization of 
the parent/child relationship. Thus, we follow the same 
solution as before. For example, we will not take into 
consideration the items tagged with 111 during the support 
and weight computation of category 1. 

• Handle synonym/related relationships (e.g. nodes {1} and 
{2} in Figure 8). The corresponding values for support and 
weight should be aggregated over all items belonging to 
synonym categories. For example, the values of support and 
weight for any of the two categories {1} and {2} should be 
the aggregate of the corresponding values of instances j and f. 

• Handle synonyms in descendant/ancestor relations (e.g. {2, 
182} in Figure 8). We are currently facing the problem of 
support and weight computation for nodes, which, despite 
seeming irrelevant, possess an ancestor/descendant 
relationship indeed. In order to identify such relations, we 
must first replace each instance of a synonym by its principal 
term. For example, node {2} should be replaced by {1} 
which is easily identified as an ancestor of 182.  

 
In order to deal with the utilization of synonym tags by the users 
(e.g. in blog posts), we can keep a list of synonyms associated 
with each principal category (for example in Figure 8, {1} is a 
principal category, whereas {2} corresponds to a synonymous 
one). This list should be used in order to replace all synonyms by 
their principal categories, prior to applying FGP+. In this way, 
the articles belonging to the synonymous category will be 
considered as members of the principal one, too. 

6. EXPERIMENTAL EVALUATION 
6.1 Performance testing 
In order to evaluate the performance of the FGP and FGP+ 
algorithms we use the web log files of a news site 
(www.reporter.gr) collected over a 31 days’ period (during 
August 2006). The log files were cleaned, preprocessed, and 
sessionized, based on the assumption that the web pages viewed 
by a user within half an hour belong to the same session. The log 
files were transformed into a transaction database as the one 
shown in Table 3. Each page in the web site belongs to a topic 
and the hierarchy of topics was used as input to our algorithm. 
Table 4 shows the statistics of our log file set. 
 

Total number of files 31 
Avg num of hits per day 8708 
Avg num of sessions per day 882 
Avg session length (in page hits) 8.5 
Avg num of k-item sets per day (FP-Growth) 7 
Avg num of generalized k-item sets per day  56 

Table 4. Log files processing statistics 

When no pruning is used, the time needed for the creation of 
the Closure Enumeration Tree (CET) is 21.04 seconds and the 
tree contains 1707 rules on average, against only 17.2 seconds 
and 281 rules obtained by applying the two pruning techniques 
(Child-Closure pruning and Subtree pruning) to FGP. This 
shows that the two pruning strategies avoid redundancies and 
accelerate the tree creation.  

In order to evaluate FGP+, we use the same set of log files, 
but this time we take into account the tag information assigned 
by the site owners. Although in this data set the tag information 
is centrally controlled by the administrators, it has some useful 
features that allow us to test the extension of the FGP algorithm, 
since a) multiple tags are assigned per article, and b) the tags 
correspond to topics in the aforementioned hierarchy, in which it 
is allowed for a node to have more than one parents. As a result, 
we are able to use FGP+ and find frequent generalized itemsets 
comprising of both articles and tags. 
 
6.2 Validity of the results of the FGP algorithm 
The output of the FGP algorithm is a set of frequent k-itemsets, 
each one associated with a weight and a support score. A 
recommendation engine can use these frequent k-itemsets against 
web usage patterns: when a user's pattern matches the (k-1) items 
in the set, then the k-th item is suggested to the user, as a 
recommended hyperlink. The recommendation is considered 
successful if the user clicks on the hyperlink. Furthermore, if this 
element corresponds to a category, the n most recent articles 
belonging to it are recommended, thus providing a solution to 
the cold-start problem (Lam et. al., 2008; Schein et. al., 2002). 
We could even propose the (k-r) items in the pattern, provided 
that the user has requested the rest r, where r is a system 
parameter. 

We measure the accuracy of the recommendations generated 
by FGP as follows: we produce frequent k-itemsets by applying 
FGP to the log file of a certain day and evaluate the rules against 
the web log file of the following day. We repeat the same 
process for every pair of consecutive days and find the average 
values, performing in essence a 30-fold cross-validation. We 
validate the itemsets produced from a day's logs only against the 



logs of the subsequent day, since the life of article ids in the logs 
is short and rules containing solely article ids will have limited 
support. In our experiments, we do not make use of the support 
and weight information of itemsets when counting for sessions 
matching a set of elements. 

We define the session coverage (SC) of a set of rules (frequent 
k-itemsets) measured against a set of sessions as the number of 
sessions that match at least one rule in the set divided by the total 
number of sessions, as shown in formula (1): 

                           sallSession
onsvalidSessiSC =                              (1) 

The results of our experiments are depicted in Figure 9. The 
horizontal axis corresponds to the day used for generating the 
frequent k-itemsets, whereas the vertical axis shows the 
percentage of sessions that match at least one rule (session 
coverage). The results in Figure 9 show that the coverage of the 
generalized itemsets is larger than that of the page-level ones. 
The average coverage for the generalized itemsets produced by 
FGP is almost 29% (dashed line in Figure 9), and it lowers into 
5.4% when page-level itemsets are only used (thin line in Figure 
9). 

0

20

40

60

0 5 10 15 20 25 30Rule Set Number

Se
ss

io
ns

 (%
)

FGP+ FP-Growth FGP

 
Figure 9. Session coverage (24 hours) 
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Figure 10. Valid itemsets per session (24 hours) 

In a second set of experiments, we count the total number of 
rules being matched, for those sessions that satisfy at least one 
rule for both FGP and FP-Growth. The average values per day 
are shown in Figure 10 (dashed and thin line for FGP and FP-
Growth respectively). We should point out that the number of 
matching rules is strongly related to the size of the 
recommendation set, since the more rules that are matched, the 
more recommendations will be provided to the end-users. As 

shown in Figure 10, the average number of rules, produced by 
FGP, that match a session for the complete dataset is 
approximately 37, while the value for FP-Growth is almost 2.  

After the initial evaluation, we proceeded in evaluating our 
algorithm by utilizing the half-day (i.e. 12 hours) log as a 
training set (i.e. for rule generation) and the next half as a test set 
(i.e. for evaluation). This approach makes sense in continuously 
updated sites, such as news sites, where new articles are 
published every few hours and visitors tend to read the most 
recent of them. The results, shown in Figures 11 and 12, prove 
this necessity. This is also an indication that in a 
recommendation engine, the rule database should be constantly 
refreshed to capture the readers’ shift of interest. 
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Figure 11. Session coverage (12 hours) 
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 Figure 12. Valid itemsets per session (12 hours) 

More specifically, as depicted in Figure 11, the average 
coverage for the generalized itemsets produced by FGP increases 
to almost 32,3% (dashed line in the graph), while when page-
level itemsets are only used (thin line) the coverage raises but is 
still smaller (hardly reaches an average of 10.5%). Similarly, as 
shown in Figure 12, the average number of rules produced by 
FGP that match at least one session for the complete dataset 
almost doubles (raises to 63), whereas the value for FP-Growth 
remains 2.  

6.3 Working with enhanced hierarchies 
In order to test the ability of FGP+ to work with more complex 
taxonomies, we used the tag information and repeated the same 
set of experiments using the 24 and 12 hour log files. The results 
of FGP+ are illustrated with a thick line in Figures 9 to 12. 



Table 5 summarizes the average values for the three techniques. 
According to these results, the average coverage for the 
generalized itemsets produced by FGP+ raises to 36.3% when 
full day logs are used and to 39% when we use half day logs. 
 

Average values FP-Growth FPG FPG+ 

24     
hours 

Coverage 
(%) 5.48 29.18 36.30 

Rules per 
session 1.82 37.70 44.02 

12 
hours 

Coverage 
(%) 10.48 32.29 39.02 

Rules per 
session 1.92 62.82 73.88 

Table 5. Summary of average values for the three algorithms 

7 CONCLUSIONS & FUTURE WORK 
In this paper, we presented the FGP algorithm, which takes as 
input a database of transactions consisting of items that are 
organized in a taxonomy, as well as the taxonomy itself, and 
produces a set of frequent k-itemsets comprising items and/or 
categories from the hierarchy. The set consists of all itemsets 
above a minimum support threshold and their generalizations but 
omits redundant generalizations. In the current implementation 
we modified and combined two state-of-the-art algorithms: FP-
Growth for frequent itemset creation and GP-Close for itemset 
generalization and pruning of redundancies. The proposed 
algorithm, as well as its extension named FGP+, is capable to 
deal with taxonomies of various levels of complexity, ranging 
from simple ones (i.e. taxonomy tree of a newspaper site) to 
more complicated ones (i.e. taxonomy graph of a feed 
aggregator), allowing each node to have more than one parents. 
FGP+ also handles multiple category assignment and a list of 
synonyms for each concept. The performance evaluation of FGP 
and FGP+ has shown that they produce many useful itemsets, 
while avoiding redundancies.  

An extensive evaluation of FGP+ against more web log data 
sets is in our next plans. We also plan to perform a user-based 
evaluation by implementing a recommendation engine on top of 
the FGP algorithm and use it on a news feed aggregator. 
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