
Mining frequent generalized patterns for Web
personalization in the presence of topic taxonomies

Panagiotis Giannikopoulos Iraklis Var lamis Magdalini Eir inaki
University of Peloponnese,

Department of Computer Science and
Technology, Tripoli, Greece

cst04006@uop.gr

Harokopio University of Athens,
 Department of Informatics and Telematics,

Athens, Greece
varlamis@hua.gr

San Jose State University, Computer
Engineering Department,

San Jose, CA, US,
magdalini.eirinaki@sjsu.edu

Abstract. The Web is a continuously evolving environment,
since its content is updated on a regular basis. As a result, the
traditional usage-based approach to generate recommendations
that takes as input the navigation paths recorded on the web page
level, is not as effective. Moreover, most of the content available
online is either explicitly or implicitly characterized by a set of
categories organized in a taxonomy. Using this information, the
page-level navigation patterns can be generalized to a higher,
aggregate level. In this direction, we present the Frequent
Generalized Pattern (FGP) algorithm. FGP takes as input the
transaction data and a hierarchy of categories that characterize
them, and produces generalized association rules that contain
transaction items and/or item categories. The algorithm can be
applied to the log files of a typical web site; however, it can be
more helpful in a Web 2.0 application where content is
semantically annotated. Given a transaction database and a
hierarchical organization of the browsed items, the algorithm
generates frequent itemsets comprising of both web pages and
categories. The results can be used to generate association rules
and subsequently recommendations for the users. We also
introduce FGP+, which is an extension of the FPG algorithm and
can take as input more complex structures than taxonomies. This
extension addresses the unique characteristics of Web 2.0 sites
such as feed aggregators or digital libraries. In such sites, the
topic or tag information attached in a page hardly forms a
taxonomy. We experimentally evaluate the proposed algorithms
using web log data collected from a newspaper web site.

1. INTRODUCTION
The role of recommendations is very important in everyday
transactions. When buying a product, or reading a newspaper
article, one would like to have recommendations on related
items. To achieve this, recommendation engines first build a
predictive model, by discovering itemsets or item sequences with
high support among users. Recommendations are subsequently
generated by matching new transaction patterns to the predictive
model. Most current approaches in web personalization consider
that a web site consists of a finite number of web pages and build
their predictive models based on this assumption (Mobasher,
2007). The Web, however, is a continuously evolving
environment and this assumption does no longer hold. News
portals are typical examples of this situation since they update
their content on a regular basis. As a result, the traditional usage-
based approach that takes as input the navigation paths recorded
on the web page level is not as effective. Since most predictive
models are based on frequent itemsets, the more recent a page is,
the more difficult it is to become part of the recommendation set;

at the same time, such pages are more likely to be of interest for
the average user. This problem can be addressed by generalizing
the page-level navigation patterns to a higher, aggregate level
(Eirinaki et. al. 2003; Mobasher, 2007).

In this work, we present the FGP algorithm, to address the
aforementioned problem. The FGP algorithm is in essence the
result of the modification and combination of two algorithms
that have been proposed in different contexts. The first one, FP-
Growth (Han et. al. 2004), is given a database of user
transactions that comprise one or more unordered items
(itemsets) and a minimum support threshold. The algorithm
processes the transaction database and mines the complete set of
frequent itemsets (whose frequency surpasses the threshold). FP-
Growth considers the support of each item in the set to be equal
to one. In this work, we extend the algorithm so that it assigns
different weights to every item in the set depending on its
importance in the transaction. We should note that the FP-
Growth algorithm does not consider any relation between items
in the database. This, however, is not the case in the web, where
items in a web site are (conceptually) hierarchically organized.
This intrinsic characteristic of the web can be tackled by the
second algorithm, GP-Close (Jiang and Tan, 2006; Jiang et. al.,
2007). GP-Close considers a hierarchical organization of all
items in the transaction database and uses this information to
produce generalized patterns. The two algorithms are very
efficient and solve many of the problems of pattern mining, such
as the costly generation of candidate sets and the over-
generalization of rules.

The FGP algorithm works efficiently in the case of web sites
that have a well-defined underlying hierarchy of topics, such as
news portals. Many Web 2.0 sites, however, present a more
complex underlying structure. For instance, feed aggregators
summarize and present content that is collected from multiple
sources. In such sites, the content is not necessarily categorized
into predefined categories (Inform 2007), being described by
user-defined tags instead. This collaborative tagging process
results into folksonomies (Voss 2007; P. Heymann and H.
Garcia-Molina 2006) that differentiate from the traditional top-
down taxonomies. The more complex structure of folksonomies,
the use of plurals, the synonym polysemy and specificity of
tagging raise new issues for the recommendation engines. In this
context, we propose an extension of the FGP algorithm, named
FGP+ that takes a more composite topic hierarchy as input, and
supports multiple category assignments per topic.

In brief, the contributions of our work are outlined in what
follows:

• We modify and combine the forces of FP-Growth and
GP-Close in one efficient generalized pattern mining
algorithm, named FGP which:

o extends the frequent-pattern tree, the main structure of
the FP-Growth algorithm, to include weight
information about items, thus producing a weighted
FP-Tree (WFP-Tree)

o addresses the problem of continuously updated content
by using the WFP-Tree and the taxonomic information
related to the web site's content as input to GP-Close,
and generates generalized recommendations

• We present an extension of FGP, named FGP+ that
supports an extended taxonomy of topic categories
and/or multiple category assignments per item. The
extended algorithm directly addresses the special
characteristics of social networking applications.

• We experimentally evaluate our approach using data
collected from a newspaper's web site.

The paper is organized as follows. First, we provide an
overview of the related research in the area of pattern and
association rule mining, as well as in the area of personalizing
news sites. We briefly describe the fundamentals of the FP-
Growth and GP-Close algorithms, and we present the details of
the FGP algorithm, in Sections 3 and 4 respectively. We
motivate the need for an extension of the basic algorithm, and
convey our solution in Section 5. In Section 6, we discuss our
implementation and present the experimental results. We
conclude with our plans for future work in Section 7.

2. RELATED WORK
There exist numerous approaches that address the problem of
personalizing a web site. An extensive overview can be found in
(Mobasher, 2007). In this paper, we overview those that are
more similar to ours with regards to: a) the personalization of
news sites and b) the abstraction of the generated patterns using
a hierarchy.

Both research projects (Antonellis et. al., 2006; Banos et. al.,
2006; Katakis et. al. 2008, Gabrilovich et. al., 2004) and
commercial sites, such as Spotback (http://spotback.com) and
Topix (http://www.topix.net), have attempted to address the need
of personalizing the content of a news site according to users'
preferences. Most of those approaches, however, are based on
the preference information explicitly provided by the users.
However, users' interests change from time to time. In the
existence of this concept-drift issue (Tsymbal, 2004; Katakis et.
al., 2008), either web users should continuously update their
preferences, or the system will eventually fail to present useful,
personalized recommendations. We can see that this is a
situation analogous to the cold-start problem, which appears
when a system should make predictions in the absence of any
transaction history. The cold-start problem has been addressed
mainly in the context of collaborative filtering systems (Lam et.
al., 2008; Schein et. al., 2002), by creating hybrid recommender
systems that take into account both the content of the site and the
user ratings or profiles. When there is not adequate user-based
information, similarities between the content can be used to
make predictions.

The idea of integrating the content in the recommendation
process has also been addressed by generalizing the page-level
navigation patterns to a higher, aggregate level, with the aid of a

topic hierarchy. In a previous work, we have proposed the
mapping of all user sessions to the topics of a hierarchy (Eirinaki
et. al., 2003). Those generalized sessions were then used as input
to the Apriori algorithm (Agrawal and Srikant, 1994), in order to
generate category-based recommendations. Oberle et. al. (2003)
proposed a similar framework for semantic web sites, where the
content was annotated using an ontology. This framework
focused on web mining instead of personalization tasks. In
(Middleton et. al., 2004) an approach focusing on recommending
academic research papers was proposed. The authors mapped the
user profiles as well as the research papers to ontology terms,
and used those data as input to a collaborative filtering
recommender.

Considering several shortcomings of collaborative filtering,
such as data sparsity and lack of scalability (Mobasher, 2007),
we opted for an association rule mining algorithm as the core of
the personalization process. Compared to Apriori or its
extensions, namely, AprioriTid and AprioriHybrid (Agrawal and
Srikant, 1994), the FP-Growth algorithm is more efficient in that
it does not generate candidate itemsets, but adopts a pattern-
fragment growth method instead. Moreover, we use the topic
hierarchy as an inherent component of our algorithm, and adapt
the GP-Close mechanism in order to produce generalized
recommendations taking as input hierarchical, as well as
complex taxonomies. In contrast to existing techniques that
recommend either pages or categories, FGP and its extension
generate frequent itemsets comprising of both of them. Thus, it
supports the generation of recommendations that include a
combination of pages and page categories.

3. FP-GROWTH AND GP-CLOSE
3.1. The FP-Growth algorithm
The details of the FP-Growth algorithm can be found in the
related bibliography (Han et. al. 2004). In what follows we
present an overview of the algorithm using a running example.
This same example is employed in order to demonstrate the
differences between FP-Growth and our algorithm, FGP.

In the first step, FP-Growth scans the transaction database,
finds all frequent items (minimum support is 3 in our example)
and orders them in descending frequency order. In a second
database scan, the FP-Tree is constructed. Each transaction is
mapped to a path in the FP-Tree. For the items already in the
tree, the count of the respective nodes in the path is updated,
whereas new nodes are added for the remaining items. For items
belonging to more than one frequent itemsets, all their
appearances in the tree are linked. An index table containing all
frequent items sorted in descending global frequency order,
points to the first appearance of each item in the FP-Tree. The
FP-Tree resulting from the transaction database of Table 1 is
shown in Figure 1.

TID Itemset Ordered frequent

items (min freq=3)
100 f, a, c, a, d, g, i, a, m, c, p f, c, a, m, p
200 a, b, c, f, c, l, a, m, o f, c, a, b, m
300 b, f, h, j, o, f f, b
400 b, c, k, s, p, c, b c, b, p
500 a, c, f, c, e, l, f, p, m, n, a f, c, a, m, p

Table 1. A sample transaction database.

http://spotback.com/�
http://www.topix.net/�

Figure 1. The steps of constructing an FP-Tree.

Figure 2. The taxonomy of items

As proven by Han et al. (2004), the FP-Tree is adequate for
mining frequent patterns and can replace the transaction
database. In order to compute the support of a k-itemset, FP-
Growth scans the tree in order to find the less frequent items in
the set. The items in the path from the root to the item under
examination form the conditional pattern base of the item and
their support equals the support of the item under examination
(count adjustment). Table 2 contains the conditional pattern base
for the FP-Tree of Figure 1.

Item Conditional pattern base Conditional FP-Tree
p {fcam:2, cb:1} {c:3}|p
m {fca:2, fcab:1} {f:3, c:3, a:3}|m
b {fca:1, f:1, c:1} {}
a {fc:3} {f:3, c:3}|a
c {f:3} {f:3}|c
f {} {}

Table 2. The conditional pattern base and FP-tree.

3.2. The GP-Close algorithm
The GP-Close algorithm takes as input a transaction database DB
and a taxonomy T, containing all items of DB. Using a minimum
support threshold, it generates a tree called closure enumeration
tree (CET) that contains all the generalized frequent itemsets.
The children of a node in the CET expand their parent itemset by
adding one item.

 The first step of the algorithm is to locate all frequent 1-
itemsets and generate all their frequent generalizations by
looking up to T. After sorting them in a support increasing
manner, it gradually expands them to n-itemsets, by combining
smaller sets and updating support count. Two pruning techniques
prevent from exploring unnecessary combinations: the Subtree

pruning and the Child-Closure pruning. The details of the
algorithm and an explanation of the pruning techniques are
available in (Jiang and Tan, 2006).

4. The FGP algorithm
In order to demonstrate how the FGP algorithm functions we use
the running example introduced in Section 3. Consider that all
items in the transaction database of Table 1 are articles in a news
site and that the taxonomy of topics depicted in Figure 2 exists
for this site (numbers correspond to topic ids, and letters to
article ids). Without loss of generality we assume that each
article belongs to a single topic. We show how the algorithm is
extended to handle multiple category assignments in Section 5.

4.1. Pre-processing: item weighting
We should point out that the information we store in the FP-Tree
differs from that of the original implementation. In the original
paper (Han et al. 2004), each transaction identifier (TID) stores
only one occurrence for each node. However, in the case of web
log files, a user might visit a web page more than once during a
session. Repetitiveness signifies the importance of a page for a
specific user, thus the input format is modified to include
<pageID, weight, support> triplets, instead of merely pageID
information.

Although a page’s importance in a session depends on the
number of repetitive visits, its importance in the database is
related to the number of distinct sessions it appears in. Thus,
analogously to term weighting in document collections (i.e.
tf*idf), we consider the weight of a page in a session to be the
number of its appearances in the session divided by the total
number of page hits in the session (page frequency) and the

support of a page to be the number of sessions that contain this
page (inverse session frequency).

TID Session items (PID, hits) Total
hits/session

100 (a,3), (c,2), (f,1), (d,1), (g,1), (i,1),
(m,1), (p,1)

11

200 (a,2), (c,2), (b,1), (f,1), (l,1), (m,1),
(o,1)

9

300 (f,2), (b,1), (h,1), (j,1), (o,1) 6
400 (b,2), (c,2), (k,1), (s,1), (p,1) 7
500 (a,2), (f,2), (c,2), (e,1), (l,1), (p,1),

(m,1), (n,1)
11

Table 3. The web log entries grouped by session

The result of this processing for Table 1 is depicted in Table 3,
which is consequently mapped to the WFP-Tree.

4.2. The FGP Algorithm
The FGP algorithm takes as input a transaction database (as in
Table 3) and a taxonomy (as in Figure 2) and constructs a set of
generalized association rules as follows:

1) Scan the transaction database and construct the WFP-Tree
2) Find frequent 1-itemsets using the WFP-Tree
3) Create frequent generalized 1-itemsets using the hierarchy

a) Sort 1-itemsets in increasing support order
b) Prune Children: While creating the generalization tree

prune 1-item generalizations that have support equal to a
frequent 1-itemset already in the tree

4) Combine 1-itemsets to generate the complete generalized
itemsets tree.
a) Prune subtrees: If a n-itemset A can be subsumed by an

identified k-itemset B already in the tree with n⊂ k and
support(A)=support(B) then A and its corresponding
subtree is pruned.

In what follows, we demonstrate the implementation of the FGP
algorithm on the WFP-Tree and put light on the details of
support counting, tree generation and pruning, using the running
example introduced before.

4.2.1 Construction of the WFP-Tree
In order to construct the WFP-Tree, the transaction database is
parsed and the support and weight for each individual page in a
transaction is calculated. The algorithm then aggregates the
weights of the remaining page ids and stores a reference to the
header table. The transactions are stored in decreasing weight
order. The final result for the database in Table 3 is depicted in
Figure 3. The WFP-Tree can replace the original transaction
database in the remaining steps of the algorithm.

4.2.2 Discovering frequent 1-itemsets and their generalizations
The header table, which accompanies the WFP-Tree, contains a
reference to every page in the tree. This table, along with the
taxonomy, is used as input in order to find frequent 1-itemsets
and produce the corresponding frequent generalized 1-itemsets.
These itemsets are, in essence, the frequently visited categories
in the database.
 Since categories correspond to more than one page, in order
to find the total weight for each category (internal node in the
taxonomy tree), FGP finds all the corresponding pages (leaf

nodes) in the taxonomy tree. It subsequently processes the index
file, from bottom to top, in order to locate all the appearances of
the leaf nodes in the WFP-Tree and sum their weights.

Figure 3. The Weighted FP-Tree

For computing the support of a topic (i.e. the number of
transactions that contain at least one page from this topic), FGP
examines all appearances of the corresponding pages in the
WFP-Tree. The transactions that contain many pages from the
same topic are counted only once in the support of the latter.

For example, the support for category 11 is computed based
on pages j, b and a. First the algorithm aggregates the
appearances of j (1), which is lower in the header table, then of b
(1+1 + 1-1, due to j) and consequently those of a (3-1 since b has
been added). The total support for category 11 is consequently 5,
which corresponds to the number of transactions that contain at
least one of {j, b, a}. The weight of 11 is 1.42, which is the sum
of the weights of j, b and a.

4.2.3 Pruning 1-itemset generalizations
In this step all 1-itemsets and their generalizations that do not
have high support (e.g. support < 3 in our example) are being
pruned.

Furthermore, in order to avoid the combinatorial explosion of
the GP-Close when it searches for all frequent n-itemsets, FGP
also prunes those frequent 1-item generalizations that have the
same support as one of their specializations. For example, the
support of category 37, comprising of pages f and g is 4, which
equals to the support of f. As a result, the generalization of 37 is
pruned from the final tree and so do all the combinations of 37.

In order to prune the frequent 1-item generalizations the
algorithm sorts all frequent 1-itemsets in increasing support
order. If a generalization has the same support with one of its
specializations, then it is pruned from the closure enumeration
tree. The first level of the tree containing the frequent
generalized 1-itemsets is shown in Figure 4.

Figure 4. Frequent generalized 1-itemsets

Figure 5. Creating the 2-itemsets for the first 1-itemset

Figure 6. Expansion of the first 1-itemset and subtree pruning

4.2.4 Discovering frequent k-itemsets
FGP incrementally combines the frequent 1-itemsets to generate
larger sets. After computing their support and weight, the sets
that do not meet the minimum support requirements are pruned.
The support for the itemset K is computed over the WFP-Tree as
follows:

Suppose that Lz is the set of all leaf nodes for item z. If z is a
page then Lz={z}.

1.construct }{ zLLS = : Kz∈∀ supportK=0

2.for LSL ∈1
, the first set of pages in LS

3. 1Li∈∀ find ALLi : all appearances of i in WFP-Tree

4. ALLx ii ∈∀ if contain(subnodes(ix) ,LS-L1)

 then supportK=supportK+supportlast

where the method contain() parses the list of subnodes of ix
until at least a page from all the sets in (LS-L1) is found, and
supportlast is the support of the last page checked. If the end
of a subnodes list has been reached without finding a page for
every set then supportlast=0.

To provide an example, we calculate the support of K={f, 24}.
We first construct LS={{f},{p,l}}. We check all appearances of f
and search for either p or l in the sub-node lists. The support for

K is 1 (the support of left shaded l in Figure 3) + 2 (the support
of the leftmost occurrence of p in the WFP-tree) + 0 (the
rightmost f does not contain p or l in its node list). A support of 3
is above the minimum threshold in our example, so {f,24} is a
frequent 2-itemset. The weight of this itemset is the aggregate of
the weights of all WFP-Tree nodes involved in the support
counting, which means f and l in the leftmost branch (0.38+0.11)
and p and l (0.18+0.09) in the second leftmost sub-branch
(which shares f as an ancestor). The total weight for K is 0.76.

4.2.5 Pruning redundant subtrees
It is obvious that certain combinations will be pruned due to
insufficient support. For example, a scan in the WFP-Tree of
Figure 3 gives to {m,p} a support of 2, which is below the
specified threshold. Thus, {m,p} and its subtree are directly
pruned. All the 2-itemsets generated from {m} are listed in
Figure 5.

A second pruning strategy is applied in this step. According to
this, when a k-itemset has equal support to a (k+1)-itemset and is
a subset of this itemset then it is a subsumed one and can be
pruned. For example, the shaded node a in Figure 5 is pruned.
This strategy further reduces the possible combinations than
need to be checked in the next expansion step.

Figure 7. The modified taxonomy of Figure 2, in which it is allowed for a node to have more than one parents.

The complete expansion of the first 1-itemset results in

pruning most of the n-itemsets created (n>1). Figure 6 illustrates
the result of this expansion, where all shaded nodes are pruned.
Expansion continues with the remaining 1-itemsets.

When the tree of sets cannot be further expanded, each node
in the tree is exported as a frequent k-itemset, which can be used
to generate recommendations. For example, similarly to
association rules-based recommendations, the recommender
system can find the k-itemset that is more similar to the current
user’s navigation, by comparing the k-1 items (pages or
categories) to the current visit. The system can then recommend
the k-th item, if it is a page (e.g. a news article), or the most
popular/recent pages belonging to the k-th item, if it is a
category.

5. The FGP+ algorithm
The FGP algorithm can be used for generating recommendations
in sites where the categories are organized in a hierarchy and
each page is characterized by a single category. However, in the
case of feed aggregators or digital library mediators, the
underlying connectivity of categories is more complex (i.e.
taxonomies are enhanced with "related category" links and
categories have multiple direct ancestors) and pages (or items in
general) are assigned to multiple categories. In what follows, we
propose FGP+, which is an extension of the FGP algorithm that
addresses the aforementioned issues.

5.1 Major differences between a newspaper site and an
aggregator
In the newspaper world, things are quite simple: there is a
collection of articles, each one belonging to a single category
only, and a hierarchy of categories, strictly defined by the
administrator so that every node has one parent at most.
Nevertheless this is not the case in Web 2.0 sites where both the
content and the category “tagging” is user-controlled. Even when
the users select from a list of predefined tags to assign to their
articles (e.g. blog posts), they may choose more than one per
item. Moreover those tags may belong to inner categories of the
taxonomy (e.g. page i in Figure 7, which is assigned to
categories 2 and 13)

In several cases the tags assigned to items are different but
share similar meaning. Such related or synonym categories can
be shown in the taxonomy with horizontal relations (e.g. the
relation between categories 3 and 17 in Figure 7). This implies
that we need a method to map words to their synonyms in the
taxonomy.

5.2 Principal extensions to the FGP algorithm

The modifications in the taxonomy do not affect the original
transaction database and the structure of the WFP-Tree. The
taxonomy tree, however, has to be enhanced with additional
relations allowing each node to have more than one parent. Thus
a taxonomy graph should be created, that will maintain its
directed acyclic nature. Additionally, each category can have a
set of synonyms associated with it, in order for the mining
algorithm to address cases where different users describe the
same content using different category tags.

The construction of the extended tree structure and especially
the computation of support and weight for a composite itemset,
comprising both pages and categories, is not a straightforward
task. In fact, even in the case when we consider no “related
topic” edges for the taxonomy graph, the latter should be
constructed very cautiously so as to take into account multiple
parent assignments for the same internal or leaf node.

Moreover, when we further extend our data structure,
allowing each node to contain a list of synonyms associated with
it, things become really challenging. For example, Figure 8
presents a taxonomy enhanced with synonymous/related
categories information. Furthermore, both leaf and inner
categories have instances (pages, denoted with letters).

In what follows, we discuss the different situations that need
to be handled during the construction of the extended closure
enumeration tree and the actions that are taken for the
computation of support and weight (the relations between nodes
are depicted in the taxonomy graph of Figure 8):

 Figure 8. The taxonomy graph now supports a list of synonyms
for each node, whereas the instances (words from actual tags) do
not necessarily belong to the same level.

• Compute the support and weight of categories containing

items that have a parent/child relationship (e.g. {18, 182} in
Figure 8). In this case we can either, a) ignore the subclass
relation in the creation of the closure enumeration tree, i.e.
regard the two categories as unrelated, or b) consider that
either the parent or the child is supported when an instance of
the child category is found (e.g. k). In our implementation,
we follow the first alternative and ignore the existence of the
child nodes, as far as the parent one is concerned when
computing the support and weight. For example, the support
and weight computation for the pair {18, 182} of the closure
enumeration tree of Figure 8 occur independently for the two
nodes, taking the sessions containing p and m, or p and k but
not those that contain m and k but not p, into account.

• Handle nodes having descendant/ancestor relationships (e.g.
{1, 111} in Figure 8), which is in essence a generalization of
the parent/child relationship. Thus, we follow the same
solution as before. For example, we will not take into
consideration the items tagged with 111 during the support
and weight computation of category 1.

• Handle synonym/related relationships (e.g. nodes {1} and
{2} in Figure 8). The corresponding values for support and
weight should be aggregated over all items belonging to
synonym categories. For example, the values of support and
weight for any of the two categories {1} and {2} should be
the aggregate of the corresponding values of instances j and f.

• Handle synonyms in descendant/ancestor relations (e.g. {2,
182} in Figure 8). We are currently facing the problem of
support and weight computation for nodes, which, despite
seeming irrelevant, possess an ancestor/descendant
relationship indeed. In order to identify such relations, we
must first replace each instance of a synonym by its principal
term. For example, node {2} should be replaced by {1}
which is easily identified as an ancestor of 182.

In order to deal with the utilization of synonym tags by the users
(e.g. in blog posts), we can keep a list of synonyms associated
with each principal category (for example in Figure 8, {1} is a
principal category, whereas {2} corresponds to a synonymous
one). This list should be used in order to replace all synonyms by
their principal categories, prior to applying FGP+. In this way,
the articles belonging to the synonymous category will be
considered as members of the principal one, too.

6. EXPERIMENTAL EVALUATION
6.1 Performance testing
In order to evaluate the performance of the FGP and FGP+
algorithms we use the web log files of a news site
(www.reporter.gr) collected over a 31 days’ period (during
August 2006). The log files were cleaned, preprocessed, and
sessionized, based on the assumption that the web pages viewed
by a user within half an hour belong to the same session. The log
files were transformed into a transaction database as the one
shown in Table 3. Each page in the web site belongs to a topic
and the hierarchy of topics was used as input to our algorithm.
Table 4 shows the statistics of our log file set.

Total number of files 31
Avg num of hits per day 8708
Avg num of sessions per day 882
Avg session length (in page hits) 8.5
Avg num of k-item sets per day (FP-Growth) 7
Avg num of generalized k-item sets per day 56

Table 4. Log files processing statistics

When no pruning is used, the time needed for the creation of
the Closure Enumeration Tree (CET) is 21.04 seconds and the
tree contains 1707 rules on average, against only 17.2 seconds
and 281 rules obtained by applying the two pruning techniques
(Child-Closure pruning and Subtree pruning) to FGP. This
shows that the two pruning strategies avoid redundancies and
accelerate the tree creation.

In order to evaluate FGP+, we use the same set of log files,
but this time we take into account the tag information assigned
by the site owners. Although in this data set the tag information
is centrally controlled by the administrators, it has some useful
features that allow us to test the extension of the FGP algorithm,
since a) multiple tags are assigned per article, and b) the tags
correspond to topics in the aforementioned hierarchy, in which it
is allowed for a node to have more than one parents. As a result,
we are able to use FGP+ and find frequent generalized itemsets
comprising of both articles and tags.

6.2 Validity of the results of the FGP algorithm
The output of the FGP algorithm is a set of frequent k-itemsets,
each one associated with a weight and a support score. A
recommendation engine can use these frequent k-itemsets against
web usage patterns: when a user's pattern matches the (k-1) items
in the set, then the k-th item is suggested to the user, as a
recommended hyperlink. The recommendation is considered
successful if the user clicks on the hyperlink. Furthermore, if this
element corresponds to a category, the n most recent articles
belonging to it are recommended, thus providing a solution to
the cold-start problem (Lam et. al., 2008; Schein et. al., 2002).
We could even propose the (k-r) items in the pattern, provided
that the user has requested the rest r, where r is a system
parameter.

We measure the accuracy of the recommendations generated
by FGP as follows: we produce frequent k-itemsets by applying
FGP to the log file of a certain day and evaluate the rules against
the web log file of the following day. We repeat the same
process for every pair of consecutive days and find the average
values, performing in essence a 30-fold cross-validation. We
validate the itemsets produced from a day's logs only against the

logs of the subsequent day, since the life of article ids in the logs
is short and rules containing solely article ids will have limited
support. In our experiments, we do not make use of the support
and weight information of itemsets when counting for sessions
matching a set of elements.

We define the session coverage (SC) of a set of rules (frequent
k-itemsets) measured against a set of sessions as the number of
sessions that match at least one rule in the set divided by the total
number of sessions, as shown in formula (1):

 sallSession
onsvalidSessiSC = (1)

The results of our experiments are depicted in Figure 9. The
horizontal axis corresponds to the day used for generating the
frequent k-itemsets, whereas the vertical axis shows the
percentage of sessions that match at least one rule (session
coverage). The results in Figure 9 show that the coverage of the
generalized itemsets is larger than that of the page-level ones.
The average coverage for the generalized itemsets produced by
FGP is almost 29% (dashed line in Figure 9), and it lowers into
5.4% when page-level itemsets are only used (thin line in Figure
9).

0

20

40

60

0 5 10 15 20 25 30Rule Set Number

Se
ss

io
ns

 (%
)

FGP+ FP-Growth FGP

Figure 9. Session coverage (24 hours)

0

20

40

60

80

100

120

0 5 10 15 20 25 30

Rule Set Number

Va
lid

at
in

g
Ru

le
s

FGP+ FP-Growth FGP

Figure 10. Valid itemsets per session (24 hours)

In a second set of experiments, we count the total number of
rules being matched, for those sessions that satisfy at least one
rule for both FGP and FP-Growth. The average values per day
are shown in Figure 10 (dashed and thin line for FGP and FP-
Growth respectively). We should point out that the number of
matching rules is strongly related to the size of the
recommendation set, since the more rules that are matched, the
more recommendations will be provided to the end-users. As

shown in Figure 10, the average number of rules, produced by
FGP, that match a session for the complete dataset is
approximately 37, while the value for FP-Growth is almost 2.

After the initial evaluation, we proceeded in evaluating our
algorithm by utilizing the half-day (i.e. 12 hours) log as a
training set (i.e. for rule generation) and the next half as a test set
(i.e. for evaluation). This approach makes sense in continuously
updated sites, such as news sites, where new articles are
published every few hours and visitors tend to read the most
recent of them. The results, shown in Figures 11 and 12, prove
this necessity. This is also an indication that in a
recommendation engine, the rule database should be constantly
refreshed to capture the readers’ shift of interest.

0

20

40

60

0 20 40 60
Rule Set Number

Se
ss

io
ns

 (%
)

FGP+ FP-Growth FGP

Figure 11. Session coverage (12 hours)

0

50

100

150

200

250

0 10 20 30 40 50 60
Rule Set Number

Va
lid

at
in

g
R

ul
es

FGP+ FP-Growth FGP

 Figure 12. Valid itemsets per session (12 hours)

More specifically, as depicted in Figure 11, the average
coverage for the generalized itemsets produced by FGP increases
to almost 32,3% (dashed line in the graph), while when page-
level itemsets are only used (thin line) the coverage raises but is
still smaller (hardly reaches an average of 10.5%). Similarly, as
shown in Figure 12, the average number of rules produced by
FGP that match at least one session for the complete dataset
almost doubles (raises to 63), whereas the value for FP-Growth
remains 2.

6.3 Working with enhanced hierarchies
In order to test the ability of FGP+ to work with more complex
taxonomies, we used the tag information and repeated the same
set of experiments using the 24 and 12 hour log files. The results
of FGP+ are illustrated with a thick line in Figures 9 to 12.

Table 5 summarizes the average values for the three techniques.
According to these results, the average coverage for the
generalized itemsets produced by FGP+ raises to 36.3% when
full day logs are used and to 39% when we use half day logs.

Average values FP-Growth FPG FPG+

24
hours

Coverage
(%) 5.48 29.18 36.30

Rules per
session 1.82 37.70 44.02

12
hours

Coverage
(%) 10.48 32.29 39.02

Rules per
session 1.92 62.82 73.88

Table 5. Summary of average values for the three algorithms

7 CONCLUSIONS & FUTURE WORK
In this paper, we presented the FGP algorithm, which takes as
input a database of transactions consisting of items that are
organized in a taxonomy, as well as the taxonomy itself, and
produces a set of frequent k-itemsets comprising items and/or
categories from the hierarchy. The set consists of all itemsets
above a minimum support threshold and their generalizations but
omits redundant generalizations. In the current implementation
we modified and combined two state-of-the-art algorithms: FP-
Growth for frequent itemset creation and GP-Close for itemset
generalization and pruning of redundancies. The proposed
algorithm, as well as its extension named FGP+, is capable to
deal with taxonomies of various levels of complexity, ranging
from simple ones (i.e. taxonomy tree of a newspaper site) to
more complicated ones (i.e. taxonomy graph of a feed
aggregator), allowing each node to have more than one parents.
FGP+ also handles multiple category assignment and a list of
synonyms for each concept. The performance evaluation of FGP
and FGP+ has shown that they produce many useful itemsets,
while avoiding redundancies.

An extensive evaluation of FGP+ against more web log data
sets is in our next plans. We also plan to perform a user-based
evaluation by implementing a recommendation engine on top of
the FGP algorithm and use it on a news feed aggregator.

REFERENCES
R. Agrawal and R. Srikant (1994), Fast Algorithms for Mining

Association Rules in Large Databases. In Proceedings of the
20th international Conference on Very Large Data Bases
(September 12 - 15, 1994). J. B. Bocca, M. Jarke, and C.
Zaniolo, Eds. Very Large Data Bases. Morgan Kaufmann
Publishers, San Francisco, CA.

I. Antonellis, C. Bouras and V. Poulopoulos (2006),
Personalized News Categorization Through Scalable Text
Classification, in 'Proc. of the 8th Asia-Pacific Web
Conference- Frontiers of WWW Research and Development
(APWeb 2006)', Vol. 3841 of Lecture Notes in Computer
Science, Springer-Verlag New York, Inc., Harbin, China.

E. Banos, I. Katakis, N. Bassiliades, G. Tsoumakas and I.
Vlahavas (2006), PersoNews: A Personalized News Reader
Enhanced by Machine Learning and Semantic Filtering. 5th
International Conference on Ontologies, DataBases, and

Applications of Semantics (ODBASE 2006), Springer-
Verlag, Montpellier, France, 2006

M. Eirinaki, M. Vazirgiannis and I. Varlamis (2003), SEWeP:
using site semantics and a taxonomy to enhance the Web
personalization process. In Proceedings of the Ninth ACM
SIGKDD international Conference on Knowledge Discovery
and Data Mining (Washington, D.C., August 24 - 27, 2003).
KDD '03. ACM, New York, NY, 99-108. DOI=
http://doi.acm.org/10.1145/956750.956765

E. Gabrilovich, S. Dumais and E. Horvitz (2004), Newsjunkie:
providing personalized newsfeeds via analysis of information
novelty. In Proceedings of the 13th international Conference
on World Wide Web (New York, NY, USA, May 17 - 20,
2004). WWW '04. ACM, New York, NY, 482-490. DOI=
http://doi.acm.org/10.1145/988672.988738

J. Han, J.Pei, Y. Yin and R. Mao (2004), Mining Frequent
Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach, Data Min. Knowl. Discov. 8,1. DOI=
http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83

P. Heymann and H. Garcia-Molina (2006), Collaborative
creation of communal hierarchical taxonomies in social
tagging systems. Preliminary Technical Report, InfoLab,
Stanford, 2006. Avalaible online on 26-9-2008 at:
http://heymann.stanford.edu/taghierarchy.html.

 T. Jiang and A.H. Tan (2006), Mining RDF Metadata for
Generalized Association Rules: knowledge discovery in the
semantic web era. In Proceedings of the 15th international
Conference on World Wide Web (Edinburgh, Scotland, May
23 - 26, 2006). WWW '06. ACM, New York, NY, 951-952.
DOI= http://doi.acm.org/10.1145/1135777.1135960

T. Jiang and K. Wang (2007), Mining Generalized Associations
of Semantic Relations from Textual Web Content. IEEE
Trans. on Knowl. and Data Eng. 19, 2 (Feb. 2007), 164-179.
DOI= http://dx.doi.org/10.1109/TKDE.2007.36

Inform Inc.(2008), Inform’s Essential Technology Platform,
White paper, Accessed on 26-9-2008 at:
http://www.inform.com/contents/pdf/informwhitepaper.pdf

I. Katakis, G. Tsoumakas and I.Vlahavas (2008), An Ensemble of
Classifiers for coping with Recurring Contexts in Data
Streams, Poster at the 18th Europeen Conference on Artificial
Intelligence (ECAI 2008), Patras, Greece, July 21-25, 2008

I. Katakis, G. Tsoumakas, E. Banos, N. Bassiliades and I.
Vlahavas (2008), An adaptive personalized news
dissemination system, Journal of Intelligent Information
Systems, Springer, DOI - 10.1007/s10844-008-0053-8

X. Lam, T. Vu, T. Le and A. Duong (2008), Addressing cold-
start problem in recommendation systems. In Proceedings of
the 2nd international Conference on Ubiquitous information
Management and Communication (Suwon, Korea, January 31
- February 01, 2008). ICUIMC '08. ACM, New York, NY,
208-211. DOI= http://doi.acm.org/10.1145/1352793.1352837

S. Middleton, N. Shadbolt and D. De Roure (2004), Ontological
User Profiling in Recommender Systems, ACM Transactions
on Information Systems 22, 1, 54-88. DOI=
http://doi.acm.org/10.1145/963770.963773

B. Mobasher (2007), Data Mining for Personalization. In The
Adaptive Web: Methods and Strategies of Web
Personalization, Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.).
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.). Lecture Notes in
Computer Science, Vol. 4321, PP. 90-135, Springer, Berlin-
Heidelberg, 2007

http://heymann.stanford.edu/taghierarchy.html�

D. Oberle, B. Berendt, A. Hotho and J. Gonzalez (2003),
Conceptual User Tracking, In Proceedings of the Atlantic
Web Intelligence Conference (AWIC) Madrid, Spain,
Springer, Lecture Notes in Computer Science, volume 2663.

A. Schein, A. Popescul and H. Lyle (2002), Methods and Metric
for Cold-Start Recommendations, In Proceedings of the 25th
Annual international ACM SIGIR Conference on Research
and Development in information Retrieval, SIGIR '02. ACM,
253-260. DOI= http://doi.acm.org/10.1145/564376.564421

G. Tsatsaronis, I. Varlamis and M. Vazirgiannis (2008), Word
Sense Disambiguation with Semantic Networks, in
Proceedings of the 11th International Conference on Text,
Speech and Dialogue, (TSD 2008), 8-12 September 2008,
Brno, Czech Republic.

A. Tsymbal (2004), The problem of concept drift: definitions and
related work, University of Dublin, Technical Report.
Available at https://www.cs.tcd.ie/publications/tech-
reports/reports.04/TCD-CS-2004-15.pdf on 26-9-2008

J. Voss (2007). Tagging, Folksonomy & Co - Renaissance of
Manual Indexing?. Proceedings of the International
Symposium of Information Science: 234–254

http://nova.ls.fi.upm.es/hpda/Conferences/AWIC03/AWIC03.htm�
http://nova.ls.fi.upm.es/hpda/Conferences/AWIC03/AWIC03.htm�
http://nova.ls.fi.upm.es/hpda/Conferences/AWIC03/AWIC03.htm�
http://nova.ls.fi.upm.es/hpda/Conferences/AWIC03/AWIC03.htm�

	1. INTRODUCTION
	2. RELATED WORK
	3. FP-GROWTH AND GP-CLOSE
	4. The FGP algorithm
	The FGP algorithm takes as input a transaction database (as in Table 3) and a taxonomy (as in Figure 2) and constructs a set of generalized association rules as follows:
	Scan the transaction database and construct the WFP-Tree
	Find frequent 1-itemsets using the WFP-Tree
	Create frequent generalized 1-itemsets using the hierarchy
	Sort 1-itemsets in increasing support order
	Prune Children: While creating the generalization tree prune 1-item generalizations that have support equal to a frequent 1-itemset already in the tree
	Combine 1-itemsets to generate the complete generalized itemsets tree.
	Prune subtrees: If a n-itemset A can be subsumed by an identified k-itemset B already in the tree with n k and support(A)=support(B) then A and its corresponding subtree is pruned.
	4.2.2 Discovering frequent 1-itemsets and their generalizations
	5. The FGP+ algorithm
	6. EXPERIMENTAL EVALUATION
	7 CONCLUSIONS & FUTURE WORK
	REFERENCES

