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Abstract Wearable technology allows users to moni-

tor their activity and pursue a healthy lifestyle through

the use of embedded sensors. Such wearables usually

connect to a mobile application that allows them to set

their profile, and keep track of their goals. However, due

to the relatively high maintenance of such applications,

where a significant amount of user feedback is expected,

users who are very busy, or not as self-motivated, stop

using them after a while. It has been shown that ac-

countability improves commitment to an exercise rou-

tine. In this work we present the PRO-Fit framework, a

personalized fitness assistant aiming at engaging users

in fitness activities, incorporating a social element. The

PRO-Fit architecture collects information from activ-

ity tracking devices and automatically classifies their

activity type. Moreover, the framework incorporates a
social recommender system. Using collaborative filter-

ing on user profile and activity data PRO-Fit generates

personalized fitness schedules based on their availability

and wellbeing goals. We also incorporate the social net-

work community of the application’s users and identify

different tie strengths based on the user’s connections

and location. The output of the recommendation pro-

cess is twofold, as both new activities, as well as fitness

buddies, are being recommended to each user.
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1 Introduction

Fitness-related smartphone applications have gained pop-

ularity in recent years as they help users integrate health

and fitness activities into their daily lives creating bet-

ter personal health engagement and raise health adher-

ence. The advancements in wearable technology, where

embedded accelerometers, gyroscopes, GPS tracking and

other sensors enable the users to actively monitor their

activity have revolutionized the field, by allowing users

to engage in simpler activities, such as walking or run-

ning. However, most of the existing technologies are

based on an interactive model, expecting from the users

to actively keep track of their workouts and other fit-

ness and health goals, leading less self-motivated indi-

viduals to soon loose interest and stop exercising. Ac-

cording to a study that reviewed 200 existing health

and fitness applications, the main priority for users is

to have an application that makes any physical activ-

ity entertaining and rewarding, and motivates them to

continue striving for achieving targets they set [10]. It is

therefore essential for activity tracking and well-being

applications to incorporate these two factors to allow

people to have a positive attitude towards fitness activ-

ities. It is also important to convince them that they

have the ability to attain the goals that they have set

for themselves. This demand can be met by quantifying

and setting accurate goals for each individual.

Sometimes, it is observed that due to lack of com-

pany in performing a fitness activity, people get com-

placent and lose interest. There are many studies that

have shown that exercising as part of a group leads to

higher exercise adherence [8,13]. One well-studied phe-

nomenon is the Köhler effect [14, 26] where researchers

have shown that people working out on dyads (i.e. pairs)

keep each other motivated and exercise longer. This im-
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portant element can be partially addressed by embed-

ding rewards systems or credit points in the applica-

tions that support the wearable devices, however incor-

porating social recommendations by suggesting friends

with similar interests and goals, would be much more

effective.

In this paper, we present PRO-Fit (standing for Per-

sonalized Recommender and Organizer Fitness assis-

tant), a personalized fitness assistant framework, that

integrates multiple sources of information, including the

user’s preferences, their calendar, and their social net-

work, and proactively pushes notifications to the user,

in an effort to keep her motivated and focused on her

goals. Our motivation draws from the fact that for busy

individuals, the existing interactive models might not

be enough to keep them motivated to engage in fitness-

related activities.

The proposed framework incorporates two critical

modules: an activity classifier, and a ranking and rec-

ommendation engine. We use machine learning algo-

rithms on activity data to build predictive models that

classify the user’s activity into specific types. We build

user profiles reflecting their current lifestyle (e.g. seden-

tary vs. active), age, weight, goals (e.g. time spent exer-

cising each week), and preferences (e.g. favorite fitness

activities, level of intensity etc.). This user profile is fed

to a hybrid recommendation system that matches the

user’s profile to available activities, ranked in terms of

similarity, but also taking into consideration the geo-

location and time availability.

In addition, PRO-Fit uses collaborative filtering to

generate activity and fitness buddy recommendations

to users of fitness tracking applications. In a nutshell,

the recommendation engine takes as input the user’s ac-

tivity profile, availability and location, and finds similar

users. The ones with whom the user has stronger ties (in

terms of location, social relationship, and preferences)

are ranked higher. The system uses these similarities

to identify potential fitness buddies but also to gener-

ate new activity recommendations for the user. For in-

stance, PRO-Fit might recommend a 1-hour yoga class

at the University fitness center during lunch time for

user A, who is employee at the University, and 20-min

jogging at the nearest park for user B, who is a stu-

dent and has 30 minutes between classes. In addition,

it might recommend user B as a cardio fitness buddy

to user A when both of them are available for one hour

during lunch time on a day that both of them are lo-

cated on campus.

The rest of the paper is organized as follows: In

Section 2 we review the related work. In Section 3 we

present an overview of the PRO-Fit personalized fitness

assistant framework and outline the basic components

of the activity classifier and calendar management, in-

troduced as part of our previous work [11,12]. In Section

4 we present in detail the proposed social recommenda-

tion system. The experimental evaluation of the social

recommendation module is discussed in Section 5. In

Section 6 we present the results of a user study con-

ducted with real users of the PRO-Fit prototype appli-

cation. Finally, we conclude with our plans for future

work in Section 7.

2 Related Work

The activity trackers allow for recording various types

of data using their inbuilt accelerometers, gyroscopes,

GPS and other sensors. The data collected from these

devices can be used to determine the type of activity

and fitness level of an individual. A lot of research work

has been done in this area, by employing machine learn-

ing algorithms on past user activity data [20], heart rate

data [6], and accelerometer data [4, 5] to identify the

type of activity, and/or estimate caloric consumption.

In [15], the authors use the phone accelerometer data

and the WEKA tool to aggregate raw time series data

and generate a predictive model for activity recognition.

Contrary to prior work, this paper focuses on using a

single device conveniently kept anywhere, rather than

multiple devices distributed over the body for track-

ing purposes. In [16], the authors use an on-body chest

sensor in coordination with a smartphone to collect

the data for the activities performed by the individual,

whether static or dynamic. In [17] the authors propose

a fitness architecture named Digital Fitness Connector

(DFC), which allows the user to monitor physical activ-

ity in real-time as well as post-workout. It captures and

stores data collected from health and fitness related sen-

sors. DFC works with smartphone platform but the user

has the flexibility in carrying the smartphone or just the

DFC. The majority of the proposed approaches employ

decision trees and their scalable variations (such as ran-

dom forests) to perform the activity classification [31],

however clustering approaches have also been used to

split activity data into categories [24]. While most of ex-

isting works focus on improving the activity prediction

process, most require extensive user profiling and inter-

action throughout the day. In our previous work [11]

we proposed the use of Gradient Boosted Trees to clas-

sify a user’s activity, as recorded by a wearable device’s

accelerometer. We integrated it in an application that

scheduled workout sessions based on a user’s goals, their

preferred activity and their availability, requiring min-

imal interaction from the user.

While research has shown that exercising in groups

or having accountability partners or fitness buddies leads
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to higher exercise adherence [13, 14], very few research

works exist that have focused on this subject from a

technical standpoint. In [9], the authors propose the

use of gamification through an application and show

that cooperation among users increased the effort put

and enhanced the physical activities of participants. In

this study, the user connections were virtual (using the

app). Other related studies focus mostly on the user

experience, through a human-computer interaction and

human factors’ point of view [2,19].

In this work, we view this problem from a social

recommendation systems’ perspective. Tang et al. [30]

give a narrow definition of social recommendation as

“any recommendation with online social relations as an

additional input, i.e., augmenting an existing recom-

mendation engine with additional social signals”, while

a broader definition, refers to recommender systems

targeting social media domains such as blogs and mi-

croblogs, multimedia, question answering, job finding

and news sites [18]. In all the above domains, typical

collaborative filtering (other user preferences) is com-

bined with social based filtering (friends’ preferences)

and individual filtering (user preferences) in order to

improve the quality of recommendations.

In the survey work of Bernardes et al [7], authors

conclude that the field of social Recommenders Sys-

tems (RS) built on implicit social networks seems par-

ticularly promising, propose a social filtering formalism,

and with their experiments on music and movie pref-

erence datasets, they find that one has to test and try

a full repertoire of candidate RS, fine-tune parameters

and select the best RS for the performance indicator

he/she cares for. Authors in [32] study the efficiency of

social recommender networks merging the social graph

with the co-rating graph and consider several variations

by altering the graph topology and edge weights. With

experiments on the Yelp dataset, they conclude that

social network can improve the recommendations pro-

duced by collaborative filtering algorithms when a user

makes more than one connection.

In our work, we consider our recommendation sys-

tem to be a social one as a) it applies to the social

network of the users of the application, but also b)

it can integrate social graph-based information to en-

hance the recommendation process. The literature sur-

vey performed so far shows that most works employ

existing datasets from music or movie rating networks

to experimentally evaluate the models or algorithms

proposed, but none of them actually applies the pro-

posed solution to a real-world application. Moreover,

despite the positive results attained from the use of

social networks in motivating the users of fitness ap-

plications to exercise [3,29], no fitness applications cur-

rently exist that recommend activities to users using

a social recommender system. The only recommender

system found so far in the healthcare domain that ex-

tends the collaborative filtering approach with topic-

and sentiment-related information from user-provided

reviews is a doctor recommender system called iDoc-

tor [33]. In that work, authors employ the Yelp dataset

for extracting reviews and ratings for doctors and evalu-

ating their system. However the incorporation of social

information is included in their plans for future work.

In a nutshell, we propose a framework that mini-

mizes the need for user input and allows the end user to

keep a healthy, active lifestyle by proactively reminding

him/her about their goals and generating personalized

fitness recommendations. Contrary to previous work,

this framework integrates collaborative filtering to gen-

erate activity and fitness buddy recommendations, us-

ing as input both its users’ activities and schedules, as

well as their social network and geo-location. To the

best of our knowledge, this is the first work to inte-

grate social recommendations in a personalized fitness

assistant framework.

3 PRO-Fit Architecture

The high-level system architecture is shown in Figure 1.

The framework’s main modules are the PRO-Fit UI, the

Activity Tracking & Classification module, the Calen-

dar Integration Manager, and the Social Recommenda-

tion System. The application collects and generates var-

ious types of data; it collects and analyzes accelerome-

ter data, integrates the user’s external calendar data, as

well as their contacts (address book and social network-

derived data), GPS signal, but also stores profile and

preference data as input by the user through the appli-

cation. All the data are stored in the application’s data

store.

In this Section we provide an overview of the Pro-

Fit UI, Activity Tracking & Classification and Calen-

dar Integration Manager modules. For more details the

reader may refer to [6, 7]. The Social Recommendation

System is discussed in detail in Section 4.

3.1 User Interface and PRO-Fit UI

The activity tracking front-end can be any wearable de-

vice, including the user’s cell phone, as long as it has

an accelerometer. The accelerometer sends activity data

to the front-end mobile application. The users interact

with the mobile application through a dashboard where

they can create and update their profile, including rat-

ing several types of activities and set their health and
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Fig. 1: PRO-Fit architecture

fitness goals. More specifically, once the user logs in to

the system for the first time, the system requires from

them to build their profile, by providing demographic

information (such as age, gender, location, etc.), as well

as their health and fitness goals (such as times of exer-

cise per time period t, calories burnt per time period t,

etc.). Most importantly, the users are provided with a

list of activities (e.g. running, walking, biking, etc.) and

are asked to rate them, in a scale of 1 to 10, in terms

of how much they enjoy to participate in each activity.

This process, handled by the Profile Manager and the

Goal Manager, needs to be performed only once, unless

the user wants to update their profile or set new goals.

The third component of this module, the Session Man-

ager, is responsible for pushing notifications to the user

regarding available time slots, fitness buddies, etc., as

discussed in the following subsections. It also allows the

user to set her own schedule manually. The system con-

nects to each user’s address book and/or social network,

and also interfaces with the user’s calendar through the

Calendar Integration Manager.

3.2 Activity Tracking and Classification Module

The system collects accelerometer data from the user’s

wearable device or phone and feeds them into a clas-

sifier that has been trained to recognize and classify

the user’s activity into one of pre-defined types of ac-

tivities (e.g. walking, running, jogging, cycling, climb-

ing/descending stairs etc.).

The collected accelerometer data consists of the user

id, a timestamp, and the x, y and z values in the ac-

celerometer coordinate system. The activity data needs

to be first preprocessed to identify features within a

specific time window that will be used as input to the

classification process. The time windows are parame-

ters of the system and can be different for each user

and each activity. Figure 2 details the process of defin-

ing these windows. In the first step, the records in the

original data store are grouped by user id and activity.

After grouping is done, the records are sorted by times-

tamp in ascending order. The next step is to identify

the so-called “jumps”, that are time periods when no
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data is collected (the jump time interval is a parameter

of the framework that is determined experimentally).

Using the preprocessed accelerometer data, we iden-

tify the following features, that are subsequently used as

input to the machine learning algorithm that classifies

the user’s activity in one of the pre-defined types: av-

erage acceleration (calculated for each axis), standard

deviation (calculated for each axis), average absolute

difference (the average of the difference between the

value of each input sample records and mean of the to-

tal input sample records, calculated for each axis), av-

erage resultant acceleration (the average of the square

root of sum the squares of values of each axis), and

time between peaks (the time in milliseconds between

the peaks in the sine wave for each axis).

The features are calculated for a particular window

size such that the user’s activity is classified for each of

these windows. The feature “time between peaks” is use-

ful to find repetitive patterns such as walking and jog-

ging. In our previous work we performed an experimen-

tal evaluation of various machine learning algorithms

and concluded that tree-based models, and specifically

Gradient Boosted Trees, outperformed other methods

in correctly classifying the users’ activity [6].

Every time the user works out, the Classification

Module automatically identifies and logs their activity

and updates the user’s profile. Moreover, the updated

profile data is fed in the Activity Recommendation En-

gine that, when applicable, recommends new activities

to the user (the Activity Recommendation Engine is

part of the Social Recommendation Engine discussed

in Section 4).

3.3 Calendar Integration Manager and Fitness Session

Recommendations

The Calendar Integration Manager is responsible for

the integration of the user’s external calendar accounts

with the PRO-Fit application. The PRO-Fit applica-

tion syncs all the events from all integrated calendars

and recommends the best time for the workout as per

the goal set by the user. The user can add and delete

calendar accounts into the PRO-Fit application through

the UI. Credentials are stored securely in PRO-Fit’s

data store to access the user’s calendar data offline.

The user’s availability and blocked time slots from all

integrated calendars, along with the user’s profile and

activity data are used as input to recommend both fit-

ness sessions, described here, as well as social recom-

mendations, described in Section 4.

As previously mentioned, the user is able to set

weekly or monthly fitness goals (e.g. total calories to

burn, total duration of activities, etc.). Each week, PRO-

Fit takes as input the user’s BMI (Body Mass Index),

their goal, and their activity preferences (originally in-

put during registration and continuously updated through

the Activity Tracker & Classification module) and rec-

ommends several fitness sessions to the user. To achieve

this, the system first calculates the time needed to com-

plete each preferred activity, and then finds available

slots in their calendar. The user can accept or decline

the recommendations. The accepted sessions are regis-

tered on the user’s calendar, and prior to the beginning

of the session, the application sends a push notification

on the user’s device.

4 Social Recommendation System

The social recommendation system includes two main

modules, namely the Activity Recommendation Engine

and the Fitness Buddies Recommendation Engine. The

main input to the recommendation process is the m×n
utility matrix of m users and n activities. We denote a

user profile as:

u =< pu1, ..., pun >, puj ∈ [0, r]

where puj represents the preference of user u for ac-

tivity aj , r is the maximum rating, and puj = 0 means

that the user has not expressed any positive or negative

opinion for a particular activity. One major problem for

recommender systems, which are based on user profile

information is the cold-start problem that refers to new

users who have not yet used the system [23]. Since the

system does not contain any information about such

users activities (and as a result their user profile is

empty), it is not possible to provide recommendations

based on users with similar profiles. In order to avoid

this cold-start problem, the PRO-Fit system requests

from new users to rate their favorite activities on a scale

1 to 5 (upon registration) and this information is used

to initialize their profiles.

User preference may change over time, and these

stated preferences may also differ from the actual ac-

tivities the user ends up performing. In PRO-Fit the

user profiles are not static and the preference scores

are updated each time the system logs a user activity.

More specifically, the preference score puj of user u for

an activity j is updated using the following formula:

puj = max(puj , puj +
|auj |∑n
j=1 |auj |

) (1)

where |auj | represents the number of times user u per-

formed activity j so far. In essence, the user-provided
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Fig. 2: Data processing architecture

ratings remain unchanged until the user starts partici-

pating in that activity. The frequency of participation

affects the overall rating thereafter. According to Equa-

tion 1, each time the user repeats the activity (i.e.

|auj |), the respective preference score increases by a

fraction which depends on the total number of per-

formed activities of any kind in the same period (i.e.∑n
j=1 |auj |). In order to avoid preference scores to reach

the highest value after some time, we normalize the

preference scores for all activities at the end of each

period, according to the maximum preference score for

that period (puj =
puj

maxpuj

). A month-sized period is

used in our prototype implementation but any other

period can be used instead. As a result, the preference

score for activities that are not performed frequently

decreases over time.

4.1 Fitness Buddies’ Recommendations

Once the user profiles are established, we calculate the

user similarities, based on the intuition that the more

similar likes/dislikes two users have in terms of activi-

ties, the more similar they are. For instance, in the toy

example depicted in Table 1, we can (empirically) infer

that users A and C are more similar than any of them

is with B.

To formally calculate such similarities we use the

Pearson’s correlation coefficient (r) :

r (u, v) =

∑
i∈Iu

⋂
Iv

(pui − p̄u)(pvi − p̄v)√ ∑
i∈Iu

⋂
Iv

(pui − p̄u)2
√ ∑

i∈Iu
⋂

Iv

(pvi − p̄v)2

(2)

where Iu denotes the list of activities the user u has

performed or rated, p̄u and p̄v are the average ratings

of users u or v respectively and pui, pvi are the ratings

of users u and v respectively for activity i1. The values

of r range in the [-1,1], so we normalize them to [0,1]

with the following transformation (Equation 3).

1 Actually, Pearson correlation coefficient examines all
pairs of ratings assuming 0 when a rating is missing. In or-
der to avoid the effect of missing ratings, we consider only
activities rated by both users.
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Table 1: Example: User profiles for three users and five activities (preference scale 1-5).

Users/Activities Walking Running Cycling Cardio Yoga
A 3 2 5
B 5 4 4 1
C 3 3 5 4

Table 2: Example: User pairwise similarity scores using
Pearson’s Correlation Coefficient on the matching activities

and a normalization to [0,1].

sim(u,v) A B C
A 1.000 0.005 0.854
B 0.005 1.000 0.371
C 0.854 0.371 1.000

sim(u, v) =
r(u, v) + 1

2
(3)

The similarity matrix generated by the data of Table

1 is shown in Table 2.

These scores may be used directly to rank the users

based on similarity. In this example, as empirically in-

ferred, user C is more similar to user A than user B.

Accordingly, users A and B have a relatively small simi-

larity. However, this is not the final ranked list provided

to the user. Instead, we calculate the social similarity,

which factors in the strength of the connection between

two users of the framework and is defined as:

socSim(u, v) =
1

d[u, v]
· sim(u, v) (4)

where d[u, v] measures the degree of connectivity be-

tween users u and v within a social network. This may

be implemented in various ways, the simplest being to

define the distance between edges u and v in the social

graph (so for direct connections, socSim(u, v) is equal

to sim(u, v)), and is set to a very small number or zero

for users with no connection in the social graph. How-

ever, more socially-enhanced metrics may be used, such

as incorporating the total number of common friends

(i.e. the overlap of the two users’ social graphs), etc.

Once the social similarities are calculated, the last

step is to rank the users based on their geolocation and

availability, as the system needs to recommend fitness

buddies who are physically located close to the user and

available around the same time for exercise. To perform

this, the system calculates a mileage radius around each

user and rejects users falling outside the radius, while

ranking higher the users who are closer to the center

of the circle (i.e. the user’s current location, as identi-

fied by their device’s GPS). The Calendar Integration

Module then helps to filter out the users with conflicting

schedules, and the system finally recommends as fitness

buddies those users who are similar in terms of activity

preferences and social relations, are close-by, and have

non-conflicting schedules.

4.2 Activity Recommendations

In order to recommend new activities, we can employ

any collaborative filtering approach, having as input

the user-activity matrix introduced previously. In this

work, we considered the three most widely used collab-

orative filtering techniques, namely user-based [1] and

item-based [27] collaborative filtering, and matrix fac-

torization [21]. Given a user-activity matrix as input

(like the one shown in Table 1, or the example shown

in Figure 3), the objective of collaborative filtering is

to predict the missing values, which correspond to the

missing activity preferences of each user’s profile. The

intuition behind this prediction process is to find ac-

tivities of potential interest to the user, that the user

has not yet rated (or performed) but other, similar

users, have already performed and liked. Once the miss-

ing values are predicted, the system ranks and recom-

mends to the user the activities that receive the highest

scores. The social network information is employed to

re-evaluate the similarity between user preferences. For

example, in Figure 3, the preferences of u1 will be af-

fected by u2 who is a direct friend but also by u5 who

is a friend of a friend (foaf) and has similar interests in

the activities.

In the case of user-based recommendations, the al-

gorithm chooses the top-k users with similar interests

to the current user and predicts the preference scores

for any activity that the current user has not yet prac-

ticed or rated, by averaging the scores of other users.

For example, in Figure 3, user u1 and user u5 have very

similar preferences, based on the ratings they provided,

with the sim(u1, u5) being at 0.92. So if u5 has high

preference in another activity that is currently missing

from u1’s profile, the user-based algorithm will put it

high in the list of recommendations. In the case of item-

based recommendations, which are more applicable to

systems with many users and few items, the algorithm

chooses the activities that have a similar preference pro-

file among users with the top ranked activities of the

current user and adds them to the recommendation list.

For example, in Figure 3, activities 2 and 5 present
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Fig. 3: An illustrative example, comprising social network information and activity ratings

a high similarity in user ratings (Pearson’s r is 0.91),

which makes either of them an ideal (item-based) rec-

ommendation for users who perform the other. Finally,

matrix factorization techniques, which scale better in

large preference datasets, do not calculate similarities to

predict ratings. Instead, taking the same user-activity

preference matrix as input, they train a model which

learns the latent factors (also called latent features) for

users and activities from the actual ratings. The num-

ber of factors f is usually smaller than the number of

users or activities and matrix factorization predicts the

missing preference scores (ratings) by multiplying the

user factors by activity factors.

Due to the size of the input data (which in the

social recommender context include a social network),

and after a preliminary experimental evaluation of the

three approaches with small-scale datasets, we decided

to adopt a latent factor approach to this problem. In

the context of rating-based recommender systems, the

intuition behind latent factor models is that both users

and items can be characterized by a number of factors.

These factors, not necessarily understandable by hu-

mans, are inferred by the users’ rating patterns. Latent

factors can be interpreted in our case as the amount of

skills (speed, power, agility etc) required by an activity

or the amount of skills that a user is interested in. For

example, in Figure 3, the latent factors may correspond

to the activity using a bicycle (factor #1) or being a

running (factor #2) or static (factor #3) activity. In

the new space of latent factors activities 2 and 5, which

both include a bicycle (mountain or street) will have

high values in the first factor and lower in the other

two, whereas the yoga activity (in the third column)

will be mapped to high values in the static activity fac-

tor and lower or zero values to the other two factors.

Similar mappings will be applied to user preference vec-

tors, through factorization.

The most successful realization of latent factor mod-

els for recommender systems is based on matrix factor-

ization. In this approach, the utility (user-activity) ma-

trix is decomposed into a user-factor and an activity-

factor matrix. High correspondence between user and

activity factors leads to higher predicted ratings.

More formally, let the users U and the activities A

be mapped to a joint latent factor space of dimension-

ality f , where each user u is associated with a vector

xu ∈ Rf and each activity a is associated with a vec-

tor ya ∈ Rf . In this representation, the elements of xu
and ya respectively represent the extent to which each

user/activity possesses these factors (i.e. the skills that

are required or trained by the activity). Therefore, the

dot product of the two vectors yTa ·xu is expected to cap-

ture the interest of the user for the activities’ factors,

and thus serve to estimate p̂ua as follows:

p̂ua = yTa · xu (5)

The training phase of the model, assumes the pre-

diction of several preference scores (similar to p̂ua) and

compares them to the actual scores given by users (e.g.

to the actual pua). The calibration of the two feature

vectors aims at the minimization the regularized square

error on the existing user preferences:

minx,y
∑

(pua − yTa · xu) + λ(‖xu‖2 + ‖ya‖2) (6)

where the constant λ is used to control the extent of

regularization. We solve Equation 6 using alternating
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Least Squares (ALS) [21]. In essence, ALS alternates

between keeping either the xu’s or the ya’s fixed, and

recomputes the other by solving a least squares prob-

lem. In that way, the factor vectors can be computed

independently of each other, resulting in faster real-

time responses. Another advantage of ALS compared to

other matrix factorization techniques, such as stochas-

tic gradient descent is that it is highly parallelizable

with implementations on parallel and distributed plat-

forms such as Mahout or Spark. PRO-Fit employs the

ALS implementation of Mahout (ALSWR), an iterative

algorithm which aims at minimizing a cost function at

each step and stops when a certain stopping criterion is

met or a predefined number of iterations (maxIteration)

is executed.

Once p̂ua is calculated for each user u, and their non-

previously rated activities a, the system ranks all ac-

tivities and recommends to the user the activities that

receive the highest predicted preference score.

4.3 Evaluation of Recommendations

The last but most important step when developing a

recommender system is to measure its performance on

the basis of how good it predicts user ratings. For this

purpose, popular error-based metrics can be employed,

such as mean absolute error (MAE) or root-mean-square

error (RMSE), which only consider predictions on items

in the test set. Error-based metrics are useful under the

assumption that a system that provides more accurate

predictions is preferred by the user [28].

Assuming that the recommender system generates

predicted ratings p̂ua for a test set T of user-activity
pairs (u,a) for which the true ratings pua are known.

Root Mean Squared Error (RMSE) between the pre-

dicted and actual ratings is given by:

RMSE =

√√√√ 1

n

∑
(u,a)∈T

(p̂ua − pua)2 (7)

where n is the size of set T . Mean Absolute Error (MAE)

is a simpler alternative, given by:

MAE =
1

n

∑
(u,a)∈T

|p̂ua − pua| (8)

5 Experimental Evaluation

Our objective in this experimental evaluation is two-

fold: a) to evaluate the activity recommendation en-

gine in terms of prediction accuracy, and b) to assess

whether the introduction of the social element improves

the overall recommendation process. Unfortunately, while

some real-life datasets that include information on users

and their preferred activities exist, these do not incor-

porate any social information. We therefore decided to

evaluate the accuracy of the activity recommendation

engine using the activity dataset, but without the so-

cial input, and employ a non-activity dataset that in-

cludes a social graph and can be directly applied to our

problem, in order to evaluate our social recommender

system. The first experiment aims to evaluate the qual-

ity of activity recommendations in the absence of so-

cial information, using real activity data for building

and evaluating the activity preference model. The sec-

ond experiment aims to highlight that the use of social

information can be beneficial for the quality of recom-

mendations. We discuss our findings in the subsections

that follow.

5.1 Evaluation of Activity Recommendations

In order to evaluate how accurately the system is able

to predict the preferred activities of each user, we used

the Actitracker dataset collected by Kwapisz et al. [22],

publicly available through the wireless sensor data min-

ing (WISDM) lab2 [25]. This dataset includes activity

data collected from android devices of a number of vol-

unteers who participated in the experiment performing

one or more out of 6 distinct activities. Although the

tracked activities are not strictly related to fitness (for

example standing or lying down) they do expose each

user’s preferences of specific physical activities versus

others, and are recorded in a level of detail (in terms of

data collected) that reflects what would be collected by
the PRO-Fit application. Since this real-life dataset has

been used previously to evaluate similar systems, we de-

cided to use it in our evaluation as well. The data was

collected at an interval of 50ms, which means it con-

tains 20 samples per second. It contains user informa-

tion along with their tri-axial axis information and the

timestamp showing when it was collected. Since our aim

is to evaluate the activity recommendation algorithm

and not the activity classification algorithm3, we em-

ployed only the manually labeled dataset, which com-

prises data from 225 users and kept only the first three

attributes of each tuple, namely the user id, activity

and timestamp. In order to calculate the preferences of

a user for a particular activity, we calculated the nor-

malized sum of each activity for each user, as described

in Equation 1 (please note, that in this dataset, the user

preferences puj are initially set to 0 as no such explicit

2 http://www.cis.fordham.edu/wisdm/dataset.php#actitracker
3 This algorithm was evaluated in our previous work [11].
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Table 3: RMSE on validation set for Matrix Factorization
algorithm (λ = 0.1)

RMSE
aaaaa
f λ 0.01 0.05 0.1 0.5 1

5 0.1999 0.1925 0.1868 0.2411 0.256
10 0.2016 0.1912 0.1877 0.2412 0.256
20 0.1936 0.192 0.1887 0.2412 0.256
30 0.2023 0.1916 0.1889 0.2412 0.256

Table 4: MAE on validation set for Matrix Factorization
algorithm (λ = 0.1)

MAE
aaaaa
f λ 0.01 0.05 0.1 0.5 1

5 0.1179 0.1141 0.1103 0.1455 0.1593
10 0.1176 0.114 0.1113 0.1454 0.1593
20 0.1243 0.1142 0.1112 0.1454 0.1593
30 0.1295 0.1138 0.1113 0.1454 0.1593

information is provided). As a result, we ended with a

dataset comprising 480 (activity) preference scores for

the 225 users.

In order to find the optimal values for the param-

eters λ and f of the Matrix Factorization model, we

performed multiple random sampling (5 times), on a

60/20/20 split (for training/validation/testing respec-

tively) measuring the RMSE and MAE errors (both

measuring the error between the predicted and the ac-

tual value of the activity preference). Looking at the

results of the evaluation, shown in Tables 3 and 4, we

observe that the optimal values are given when λ = 0.1

and f = 5 for both RMSE and MAE.

At this point we would like to point out that we have

performed similar experiments (on the same dataset)
for the two most popular neighborhood collaborative

filtering algorithms, namely user-based and item-based

collaborative filtering. From that experimental evalua-

tion, we observed that user-based collaborative filtering

was performing similarly to matrix factorization. Due

to the scalability and flexibility advantages of the ma-

trix factorization approach, and its ability to handle

better sparse matrices, we decided to adopt this algo-

rithm in the prototype’s implementation.

5.2 Evaluation of Social Recommendations

As mentioned previously, there is currently no activ-

ity dataset available that also incorporates a social ele-

ment. Therefore, we had to employ a different dataset,

that could be used as an approximation of the users

having activity preferences scenario, while incorporat-

ing a social element at the same time. Our goal is to

evaluate whether the preferences of close friends can

affect (positively) the recommendations, when weighed

more heavily in the recommendation process. For this

reason, we decided to use the well-known and broadly

used Yelp challenge dataset4. This is a very rich dataset,

but for the purposes of our study we only used the fol-

lowing information for each user: user id, friends ids,

restaurants rated, ratings. Of course, restaurant pref-

erences are not fitness activity preferences. However,

they still have an activity preference aspect and, more

importantly, such preferences can be affected by close

friends. The premise is very similar in both scenarios:

in the PRO-Fit recommendations, we expect that users

will share similar activity preferences with those who

are closer to them (in a social network context), while in

the restaurant context, we assume that users will share

similar preferences with their closest friends (again re-

flected as connections in the virtual social network).

Similarly to the previous set of experiments, our

main input is the triplet user id, restaurant (as in activ-

ity), rating (as in preference). However, a fourth very

important input is the social network of friends and

friends-of-friends of the user. Since Yelp’s social net-

work is secondary to its main goal (of allowing users to

rate businesses), it is rather sparse. Moreover, it only

made sense to select user connections who share the

same restaurant preferences, i.e. reside in the same area.

Therefore, we focused only on the city of Las Vegas, and

selected, as starting “seed” the 2030 users who had at

least one rating of a Las Vegas business and the high-

est number of friends. We then performed five experi-

ments, using different instantiations of the social simi-

larity metric socSim(u, v) of Equation 3, depending on

the value of the social connectivity parameter d[u, v],

that in turn resulted in a different input dataset:

Experiment 1 1-degree of separation (OneD):

In this experiment we expanded the original “seed”

dataset of 2030 users with their connections. In this

experiment, d[u, v] = 1 when users u and v have one

degree of separations and 0 otherwise. Let Fu denote

the “friends” of user u (i.e. u’s direct connections in

the social graph), then Equation 4 becomes:

socSim(u, v) =

{
sim(u, v), if v ∈ Fu

0, otherwise
(9)

Experiment 2 Baseline One (BasOneD): In

this experiment we expanded the original “seed” dataset

of 2030 users to become as big (in terms of number of

users) as that of the one in Experiment 1, by randomly

selecting the additional users. Let BA denote the set of

users that were randomly selected in this experiment,

4 https://www.yelp.com/dataset challenge
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Table 5: Input datasets

Dataset # Users #Businesses #Ratings
OneD 61,128 16,009 435,129

BasOneD 61,128 11,105 235,869
TwoD 108,191 16,934 1,003,766

BasTwoD 108,191 11,738 407,206
BasAll 146,763 17,386 1,022,826

social similarity is computed as:

socSim(u, v) =

{
sim(u, v), if v ∈ BA

0, otherwise
(10)

Experiment 3 2-degrees of separation (TwoD):

In this experiment we expanded the original seed dataset

of 2030 users with their friends and friends of their

friends. In other words, we expanded the social graph of

each user to include all users within two degrees of sepa-

ration. In this experiment, we set d[u, v] = 1 when users

u and v have one degree of separation, d[u, v] = 1/2

when users u and v have two degrees of separation, and

0 otherwise. Let Fu denote the friends of user u, then

Equation 4 becomes:

socSim(u, v) =


sim(u, v), if v ∈ Fu
sim(u,v)

2 , if v ∈ Fz&z ∈ Fu

0, otherwise

(11)

Experiment 4 Baseline Two (BasTwoD): In

this experiment we expanded the original “seed” dataset

of 2030 users u to become as big (in terms of number of

users) as that of the one in Experiment 3, by randomly

selecting the additional users. Let BB denote the set of
users that were randomly selected in this experiment,

then social similarity is computed as:

socSim(u, v) =

{
sim(u, v), if v ∈ BB

0, otherwise
(12)

Experiment 5 Baseline C (BasAll): In this ex-

periment we used the entire Las Vegas dataset as input

to the recommendation algorithm, eliminating the so-

cial factor.

We should point out that, since the users used as

input in each experiment are different, the number of

ratings and businesses are also different. The numbers

of users/businesses/ratings for each of the five experi-

ments are shown in Table 5.

We calculated the RMSE and MAE using a 60/20/20

split and 10-fold cross-validation for all possible com-

binations of the following parameters: f = {5, 10, 20},
λ = {0.01, 0.05, 0.2, 0.5, 1}, and number of iterations

Table 6: RMSE and optimal parameter settings for various
input datasets

Experiment f λ numIter RMSE
#1 OneD 20 0.50 20 1.215

#2 - BasOneD 30 0.50 20 1.27
#3 - TwoD 30 0.10 20 1.09

#4 - BasTwoD 5 0.50 20 1.28
#5 - BasAll 20 0.50 10 1.18

Table 7: MAE and optimal parameter settings for various
input datasets

Experiment f λ numIter RMSE
#1 OneD 30 0.50 20 0.954

#2 - BasOneD 10 0.50 10 0.917
#3 - TwoD 30 0.05 20 0.782

#4 - BasTwoD 10 0.50 20 0.925
#5 - BasAll 30 0.50 20 0.821

= {10, 20}5 for the five input datasets. Tables 6 and

7 show the combinations that generated the best (low-

est) RMSE and MAE errors for each experiment. We

observe that in both cases, the social recommender sys-

tem that uses as input the extended network spanning

two degrees of separation for each “seed” user, outper-

forms the remaining approaches. This verifies our in-

tuition that incorporating the social element results in

more accurate preference predictions. Although there

is no direct comparison between the results of this and

the previous experiment that evaluated the activity rec-

ommendations (Section 5.1), the increased MAE and

RMSE values in the second experiment can also be ex-

plained by the different scale of user ratings in the two

datasets. More specifically, the user ratings in the Yelp

dataset have been normalized to a 0-10 integer scale,

since the original dataset contained 0-5 ‘star’ ratings

allowing for half stars, whereas the ratings we created

for user activity preferences were on a 0-5 integer scale.

As a result, MAE values of 0.1 on a 0-5 scale rating and

of 1 on a 0-10 scale are considered very good.

6 User study

In order to evaluate the usability of the PRO-Fit ap-

plication and measure the engagement of end users, we

conducted a user study including 24 people, who were

relatively active (workout for at least 3 days a week or

5 The (maximum) number of iterations is one of the
stopping criteria for the iterative implementation of ALS
for Mahout that we employed. The more iterations, the
most possible for the algorithm to find an optimum so-
lution. Using 15 iterations is a reasonable default to
try (https://mahout.apache.org/users/recommender/intro-
als-hadoop.html). However, we also tested 10 and 20 itera-
tions
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more). The user group consisted of 16 males and 8 fe-

males, between 20 and 35 years old, all residing in the

broader San Francisco bay area. We requested the users

to install the PRO-Fit app on their smartphones and

asked them to use it for 15 days6. At the end of the

15-day period, we asked the participants to respond to

a set of questions and also give us some verbal feed-

back. Table 8 includes a summary of the survey ques-

tions and responses. Below are some of the comments

received from the survey:

– “I really liked the session reschedule recommenda-

tion as it automatically detected conflicting sessions”

– “I like the app feature of scanning all my calendar

events and providing proactive session recommenda-

tions without any manual pain to organize things”

– “Overall, the app experience and its functionality is

good, however there can be lot of improvements in

the performance of the app.”

– “I found this app really amazing to plan out my

exercise plan for over a 2-week period, which really

motivated me to strictly follow the plan until com-

pleted.”

– “Looks interesting, but should reduce the data con-

sumption”

– “Great app, useful for lazy and laid back people to

get motivated and workout :) ”

From the quantitative and qualitative responses we

observed that even in its prototype mode, the PRO-Fit

application was successful in motivating the majority

of the participants, with automatic session scheduling

and rescheduling whenever they added entries to their

personal/work calendars, being the most popular fea-

tures. Some of the criticism we received had to do with

the performance of the application itself, something ex-

pected as this application still runs in prototype mode.

We should also note that the socially enhanced part

of the application could not be thoroughly evaluated

in this small-scale user study as there was no overlap

between the participants’ contacts and the rest user

group. Finally, we observed that the majority of users

said that this application was successful in motivating

them to keep their planned activities, and that they

would recommend it to a friend.

7 Conclusions

In this paper we presented PRO-Fit, a personalized fit-

ness assistant framework that integrates activity data

collected by the user’s wearable device or smart phone,

6 A more detailed description of the PRO-Fit prototype as
well as application screenshots can be found in [12]

their activity preferences and fitness goals, their avail-

ability and their social network, and automatically gen-

erates fitness schedules and socially-enhanced recom-

mendations of new activities, as well as fitness buddies.

One of the issues faced by this study is that there does

not exist a publicly available dataset that comprises

both social information and activity related preferences.

For this reason, we used two different datasets: one for

extracting physical activity preferences and one that in-

cludes both user preferences and social network infor-

mation collected in a different context. Our experimen-

tal evaluation, including two real-life datasets, showed

that the socially-enhanced recommendations, outper-

form the non-socially enhanced ones. More specifically,

the algorithm that predicts a user’s preference when

the social network includes connections up to two de-

grees of separation, was the most accurate among all

we examined.

In the evaluation, we experimented with three dif-

ferent parameters of the matrix factorization algorithm

for collaborative filtering and found that the optimum

number of latent factors was 5. However, one must be

careful in a different setup. For example, if the system

detects 60 activities instead of 6, or monitors activities

with completely diverse skills’ profile, then the optimum

number of latent factors may differ. In the second ex-

periment, the structure of the social network (e.g. if it is

more dense or sparse), will affect the choice of parame-

ters. However, the experiments with several parameter

combinations reported the best results when the sec-

ond degree friends (friends of a friend) were used for

recommending activities.

We also performed a user study having 24 partici-

pants use the PRO-Fit prototype to set fitness goals and

schedule activity sessions. As with any pilot study, there

are limitations to the validity of any resultant claims

made. However,the results from this study were very

encouraging and, even though the participants used a

prototype, the majority of them rated it very positively.

A detailed analysis of usage analytics that will highlight

the time of the day they tend to accept recommen-

dations, their preference to social-based or similarity-

based recommendations etc, is within our next steps

and is expected to improve the system performance in

the user acceptance tests.

As part of our future work, we plan to explore and

evaluate different ways to calculate the tie strengths

(and as a consequence the social similarity) between

the users of the application, and extend the prototype

to incorporate external social networks in addition to

the user’s contacts, such that we can better evaluate

empirically the user’s experience. Moreover, we aim to

publicize anonymous data from the PRO-Fit social net-
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Table 8: PRO-Fit user study responses’ summary

Question
Responses

(Range or %)
How many sessions did you create
manually per week?

2 to 6

How many session recommendations
did you get per week?

4 to 7

How many calendar events do you have
on average per day?

0 to 5

Did you find session rescheduling useful
Yes 60%
No 40%

How many reschedule recommendations
did you accept?

58% Accepted
42% Rejected

What time did you prefer to schedule
your session?

Morning 30%
Afternoon 15%
Evening 55%

Do you feel the PRO-Fit app helped you be
motivated to do your workout?

Yes 45%
No 55%

Do you feel the PRO-Fit app helped you be
motivated to do workout on scheduled time?

Yes 70%
No 30%

How do you rate the rescheduling
sessions placed?

Average
60% useful

Did your analytics help you to know
your workout pattern?

Yes 67%
No 33%

What is the best feature you like about
the app you are using?

Session
recommendation

25%

Session
reschedule

45%

Goal
tracking

30%

Would you like to recommend PRO-Fit app
to your friends & family?

Yes 64%
No 36%

work and activity preference database, once we reach a

reasonably sized user-base.
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