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Abstract: Bibliographic databases are a prosperous field for data mining 
research and social network analysis. They contain rich information, which can 
be analysed across different dimensions (e.g., author, year, venue, and topic) 
and can be exploited in multiple ways. The representation and visualisation of 
bibliographic databases as graphs and the application of data mining techniques 
can help us uncover interesting knowledge concerning potential synergies 
between researchers, possible matchings between researchers and venues, 
candidate reviewers for a paper or even the ideal venue for presenting a 
research work. In this paper, we propose a novel representation model for 
bibliographic data, which combines co-authorship and content similarity 
information, and allows for the formation of scientific networks. Using a graph 
visualisation tool from the biological domain, we are able to provide 
comprehensive visualisations that help us uncover hidden relations between 
authors and suggest potential synergies between researchers or groups. 
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1 Introduction 

Currently, vast amounts of scientific publications are stored in online databases, such as 
DBLP, arXiv, and PubMed. These databases store rich information such as the 
publications titles, author(s), year, and venue. Less often they contain the abstract or the 
full publications’ content, and their references. Despite their rich content, bibliographic 
databases offer limited accessibility and do not efficiently exploit metadata elements. 
They usually restrict user queries to simple keyword-based search and retrieve scientific 
publications that contain the query terms in the selected metadata elements. As a result, 
there is often large semantic gap in bibliographic search engines between users’ needs 
and retrieved results, since access to the full content of the papers, or even the abstracts, 
is often restricted 

The exploitation of additional semantics such as date, affiliation, citations,  
co-citations, and co-authorship may further improve search capabilities and create novel 
services for bibliographic databases. In this direction, semantic enabled search engines 
for bibliographical data sources, such as GoPubMed (Doms and Schroeder, 2009), which 
specialises in the life sciences, overcome traditional keyword-based search problems and 
improve search results. In other cases, the increased popularity of social networks 
analysis had a significant impact on deployed bibliographic databases search services. 
New databases have been published, offering online services that process publication 
metadata at the maximum, such as ArnetMiner (http://www.arnetminer.org/) (Tang et al., 
2008) or Microsoft Academic Search (http://academic.research.microsoft.com/). Authors 
and venues ranking, organisation by year or topic, author profiles extraction and authors 
name disambiguation are only some of the services provided on top of these databases. 
Other services visualise co-authorship information, e.g., the ‘instant graph search’1, 
which presents the existent co-authorship paths connecting two authors, or the ‘social 
graph’2, which presents all the co-authors of a single author in a star topology. 

Despite the advantages of the semantic-enabled technologies, an imminent 
implication of the restricted access to the full articles information is that all research 
efforts towards mining scientific communities and bibliographic databases are restricted 
to accessing only the metadata offered by the bibliographic sources. Under these 
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circumstances, mining bibliographical databases in order to extract possible research 
synergies, identify research trends, and discover scientific thematic cliques or  
co-authorships, are restricted to the processing of co-authorship or co-citation graphs. In 
this direction, we propose in this paper a novel methodology for constructing and 
visualising co-authorship graphs from bibliographical databases, and show how these 
graphs can be mined to extract useful information such as possible future research 
synergies and strong collaboration links. 

The suggested method is a two-level approach. At the first level, a co-authorship 
graph is constructed processing bibliographical data. The graph is then processed using a 
novel technique called power graph analysis (Royer et al., 2008), which we transfer for 
the first time, to the best of our knowledge, from the bioinformatics domain to the 
processing of bibliographical graphs. Through power graph analysis, a given graph’s 
nodes may be clustered, through cliques and bicliques recognition in the initial graph. 
The resulting power graph allows a very efficient visualisation of the authors graph, 
while in tandem identifies cliques and bicliques of co-authors, representing them with 
power nodes. At this stage, each power node is essentially a set of authors that have 
written several papers together. At the second level, we augment the power graph with 
edges between power nodes that quantify the similarity between the authors’ sets, in 
terms of the similarity of the papers’ titles written by the respective author set. This 
second level, offers a richer representation of the initial co-authorship graph, which is 
visualised in an efficient manner. Finally, we show how we can predict possible research 
synergies between authors from this final augmented graph. 

The contribution of this work can be summarised in the following: 

• The reduction of the co-authorship graph’s complexity, with the use of power graph 
analysis techniques. The use of these techniques significantly reduces the complexity 
of the problem, in comparison to traditional co-authorship analysis techniques. 

• The efficient application of data mining techniques in the resulting power graph, 
which results in the identification of potential research synergies between authors 
that share interests and co-authors but have not yet collaborated. 

The rest of the paper is organised as follows: Section 2 presents some preliminary 
concepts regarding the construction of graphs from bibliographical databases and the use 
of power graphs in the bioinformatics domain, and discusses related work. Section 3 
introduces our approach for mining potential research synergies from co-authorship 
graphs. Section 4 demonstrates our findings stemming from the application of our 
approach to bibliographic data. Finally, Section 5 concludes and provides pointers to 
future work. 

2 Preliminaries and related work 

The primary focus of this work is the co-authorship information provided by 
bibliographic databases and the secondary is the short (title) or extended (abstract or full 
paper) content that pertains to each publication. Citation information is not considered, 
since this is seldom available in bibliographic databases. Graph-based mining methods in 
bibliographic databases operate usually in three steps: 
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a a graph is created using authors, conferences and papers’ topics 

b application of a graph-based partitioning or ranking algorithm takes place 

c results are presented either in the form of node clusters, e.g., authors by topic, 
conferences by topic, or using a graph visualisation approach, e.g., co-authors of a 
single author in a star topology. 

The majority of research works in bibliographic data mining aims at ranking authors or 
finding authors’ communities. In this work, we present a different approach which 
combines graph-based community mining with text mining techniques in order to extract 
and visualise useful information from bibliographic data, such as potential synergies 
between researchers or research groups. In order to provide a better understanding of how 
graphs are created from bibliographic data and what are the visualisation options, in the 
following we summarise the most important research works in the field and illustrate the 
different alternatives in each process. 

2.1 Constructing graphs from bibliographical databases 

Inspired by social network analysis, works on bibliographical databases have proposed 
different alternatives for modelling bibliographic information using graphs. These can be 
divided in two main categories: 

a methods that create n-partite graphs, which contain for instance authors, conferences, 
or topics as nodes, and edges that connect nodes of different type and represent 
relations (e.g., an author has published a paper in a conference) 

b methods that create graphs with a single node type and edges that may vary in 
meaning depending on the application. 

In the former category, in Zaiane et al. (2007) a bipartite model that connects conferences 
to authors is proposed. Tripartite graph models for authors-conferences-topics have also 
been introduced in the past (Tang et al., 2008; Zaiane et al., 2007). In these cases, the 
topics information is extracted from the paper titles and the resulting tripartite models 
expand the authors-topics model presented in Rosen-Zvi et al. (2004). Finally, in Sun  
et al. (2008), the authors perform domain specific author and conference ranking by 
analysing a bipartite author-conference graph using clustering and ranking heuristics. 

In the latter category, the graph nodes are usually the authors, with the edges 
representing either citation or co-authorship relations between the connected nodes. The 
first one is a directed citation graph (Ke et al., 2004), which is usually employed for 
ranking authors, whereas the second is an undirected co-authorship graph, which is 
mainly used for finding author communities (also known as cliques) (Huang and Huang, 
2006, 2007), but can also be employed for measuring author centrality (Nascimento  
et al., 2003; Smeaton et al., 2002), a type of author importance. Some of the criteria that 
might be used to weigh the edges of such author graphs are: number of co-authored 
papers, content similarity between their publications, number of co-citations or couplings, 
and number of common conferences between the connected authors. 

Another interesting type of graphs that can be constructed from bibliographical data 
are the co-author hypergraphs, where each edge (hyperedge) corresponds to a publication 
and connects all the co-authors of the specific publication. Author cliques can then be 
extracted from the graph (Han et al., 2009). In this direction, in our previous work 
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(Tsatsaronis et al., 2009), we presented an application of co-author hypergraph creation 
and clustering of its nodes. 

2.2 Mining bibliographical graphs 

Bibliographic data organisation has attracted the application focus of many data mining 
research works. In the case of scientific community mining from publication records, the 
challenge is to discover research communities that share common interests. In Rodriguez 
et al. (2002), a method is proposed that relies on the scientists’ publication records in 
order to create scientific communities. Moreover, community mining systems have been 
proposed in the past, which use bibliographic data in order to discover and visualise 
communities of researchers (Zaiane et al., 2007; Ichise et al., 2005; Tsatsaronis et al., 
2011a). In Tsatsaronis et al. (2011a), we used power graphs to represent co-authorship 
networks, which were created using bibliographic data. This significantly reduced the 
size of the graph and increased the scalability of our community mining algorithm. Using 
power graph analysis techniques in the same bibliographical data (DBLP data) and data 
mining techniques on the evolving co-authorship power graph, we proposed a novel 
methodology for clustering authors based on their publication and cooperation profile 
(Tsatsaronis et al., 2011b). 

In our previous work (Tsatsaronis et al., 2009), we experimentally studied the use of a 
novel semantic relatedness measure for the thematic organisation of research papers in an 
attempt to improve the effectiveness of retrieval in bibliographic data. In particular, we 
used the OMIOTIS measure (Tsatsaronis et al., 2010), which captures the semantic 
relatedness between text segments, and with its application we enabled the thematic 
organisation of the bibliographic data stored in online databases. 

In the direction of organising bibliographical entries into thematic subsets based on 
text similarity, other research works have employed standard text classification 
techniques, e.g., Bayesian methods or support vector machines (SVM) (Angelova and 
Weikum, 2006), concept base vector space models (Shimano and Yuakawa, 2008), in 
order to assign research papers into appropriate categories. The combined utilisation of 
metadata and full-text information for classifying bibliographic records into appropriate 
subject classes (Montejo-Raez et al., 2005) has also been proposed in the past. 

Our work is complementary to the above research directions. In this paper, we 
propose a novel method to construct a co-authorship graph and mine author communities, 
in order to identify potential future research synergies. For this purpose, we use the 
similarity between authors belonging to different communities. In the graph creation step, 
we visualise the co-authorship communities using a technique transferred from the 
biomedical domain, namely power graph analysis (Royer et al., 2008), and in the second 
step we enrich the constructed power graph with similarity edges between power nodes, 
based on the text-to-text similarity between the authors’ paper titles. Similarity is 
computed using an unsupervised semantic relatedness measure (i.e., a measure which 
compares concepts instead of terms), which results to similarity edges between power 
nodes that denote similarity in authors’ interests in conceptual level. 

2.3 Visualising graphs with power graphs 

In biology and bioinformatics studies, networks play a crucial role. Yet, their analysis and 
representation is a difficult problem. Recent experimental and computational progress 
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yields diverse networks of increased size and complexity. For example, there are 
networks of several types, such as small and large-scale interaction networks, regulatory 
networks, genetic networks, protein-ligand interaction networks, and homology networks 
analysed and published regularly. A common way to access the information in a network 
is though direct visualisation, but this often fails as it just results in ‘fur balls’ [see  
Figure 1(a)] from which little insight can be gathered. On the other hand, clustering 
techniques manage to avoid the problems caused by the large number of nodes and even 
larger number of edges by keeping a coarse-grained level of the networks’ information 
and, thus, abstracting details. But these fail too since, in fact, much of the biological 
information lies in the details. 

Figure 1 (a) huge biological ‘fur ball’ network (b) before and after the application of power 
graphs (see online version for colours) 

 
(a) 

 
(b) 

Notes: An example of a huge biological network is shown in Figure 1(a). In a smaller 
scale example [Figure 1(b)], the application of power graphs demonstrates how 
shared protein complexes can be easily identified in the produced power graph. 

In the direction of providing an efficient methodology for visualising large and complex 
biological networks, like the graphs constructed from bibliographical data may be, 
without loosing information, the authors in Royer et al. (2008) present a novel 
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methodology for analysing and representing such networks, introducing power graphs. 
Power graphs are a lossless representation of networks which reduces network 
complexity by explicitly representing re-occurring network motifs. Moreover, power 
graphs can be clearly visualised, as they compress up to 90% of the edges in biological 
networks and are applicable to all types of networks such as protein interaction, 
regulatory, or homology networks. In Royer et al. (2008), the authors demonstrate the 
usefulness of power graph analysis on five detailed biological examples ranging from 
protein-ligand binding to regulatory networks and homology networks. Figure 1 shows 
two examples of ‘fur balls’ in biological networks (Royer, 2010): in the original network, 
it is difficult to visualise and understand the patterns of interaction between proteins due 
to the huge number of nodes and edges, whereas in the second example, which is in small 
scale, the application of power graphs reduces the number of nodes and edges and results 
into a visualisation, where the shared protein complexes can be identified more easily. 

Figure 2 Basic motifs recognised by power graphs, (a) power graph semantics: biclique, star, 
and clique motifs. Power nodes are sets of nodes and power edges connect power 
nodes. A power edge between two power nodes signifies that all nodes of the first set 
are connected to all nodes of the second set. (b) Power graph conditions and their 
equivalent decompositions 

 
(a) 

 

 
(b) 
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The three basic motifs recognised by power graphs are shown in Figure 2(a). These are 
the star, the clique and the biclique, and constitute the basic abstractions when 
transforming the original graph into a power graph with power nodes, i.e., sets of nodes, 
connected by power edges. 

In the following, we will define power graphs formally. Given a graph G = (V, E), 
where V is the set of nodes or vertices and E ⊆ V × V is the set of edges that are 
unordered pairs of distinct nodes, a power graph G′ = (V′, E′) is a graph defined on the 
power set of nodes ( ),V V′ ⊆ P  whose elements (power nodes) are connected to each 
other by power edges: E′ ⊆ V′ × V′. The two power nodes of a power edge must be 
disjoint or identical: ( , ) : ( 0) ( ).u v E u v u v′∀ ∈ ∩ = / ∨ =  A power edge is a set of edges. 
Hence, power graphs are defined both on the power set of nodes ( ),V V′ ⊆ P  as well as 
on the power set of edges ( ).E E′ ⊆ P  The set of nodes V in G is the union of all power 
nodes v′. Hence, .v VV v′ ′∈ ′= ∪  The set V′ of all power nodes is required to be minimal, 
i.e., each v′ ∈ V′ must participate in at least one power edge e′ ∈ E′, or be a singleton  
set. 

In Figure 2(a), we can now understand in detail the types of motifs recognised by 
power graph analysis. If two power nodes are connected by a power edge in G′, this 
signifies that in G all nodes of the first power node are connected to all nodes of the 
second power node, thus, the two sets form a complete connected bipartite subgraph. It 
does not imply that the nodes inside each power node are connected among each other. A 
special case of biclique is the star where one of the two power nodes is a singleton node. 
If a power node in G′ is connected to itself by a reflexive power edge, this means that all 
nodes inside the power node are connected to each other by edges in G, thus, the set is a 
complete connected subgraph. 

Since power graphs are drawn in the plane, two conditions are required: 

a disjointness of power edges 

b hierarchy of power nodes. 

Condition (a) means that each edge e ∈ E of the original graph G is represented by one 
and only one power edge e′ ∈ E′ in the power graph G′ of G. Condition (b) means that 
any two power nodes v1, v2 ∈ V′ in G′ are either disjoint, or one is included in the other. 
Figure 2(b) shows the possible decompositions to fulfil these two conditions. Relaxing 
the previous two conditions leads to abstract power graphs that are difficult to visualise 
and interpret. 

The quality of a power graph is measured using edge reduction [equation (1)]. 

( )| | | |
| |

E E
E

′−
ℜ =  (1) 

Edge reduction quantifies the amount by which the number of edges in G′ is smaller than 
in G, relatively to the number of edges in G. Edge reduction is essentially the 
compression rate achieved by the power graph transformation. It assesses the 
improvement of a power graph representation over the original graph, without 
considering the meaning of the indicated structures. 
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Algorithm 1 The description of the power graph analysis algorithm 

 Input: A graph G = {V, E}, Minimum similarity smin, Weight wuv for each edge (u, v) in 
E 

 Output: A power graph G′ = {V′, E′} 
1 Initialise C and C′ to empty sets and M to an empty numeric matrix 
2 Add for each node v in V the singleton cluster {v} to C and to C′ 
3 Update M with s(U, W) for each pair of clusters (U, W) in C 
4 while | C′ | > 1 and smax(M) ≥ smin do 
5  Find (U, W) with the maximum smax in M 
6  Merge U and W, and add the new cluster to C and C′ 
7  Update M with the similarities of the new cluster to the rest 

8 Add neighbourhood N(U) of each cluster U to C, if s(N(U)) > smin 
9 Initialise V′ and E′ to empty sets, and L to an empty list 
10 For each node v ∈ V add a singleton set {v} to V′ 
11 foreach (U, W) in C do 
12  if 0U W∩ = /  and (U ∪ W, U × W) is a sub-graph in G then 

13   Add power edge (U, W) to L 
14   Compute the weight of the edge (U, W) 

15  if U = W and the U-induced graph in G is a clique then 
16   Add power edge (U, U) to L 
17   Compute the weight of the edge (U, U) 

18 while 0L ≠ /  do 

19  Remove the power edge (U, W) with the largest weight 
20  if : 0S V U S′∃ ∈ ∩ ≠ /  but U ⊄ S and S ⊄ U then 

21   Add to L the candidate power edges (U \ S, W) and (U ∩ S, W) 

22  else if : 0S V W S′∃ ∈ ∩ ≠ /  but W ⊄ S and S ⊄ W then 

23  Add to L the candidate power edges (U, W \ S) and (U, W ∩ S) 
24  else if : ( ) ( ) 0S V U W S T′∃ ∈ × ∩ × ≠ /  then 

25  if U ⊂ S then 
26   Add to L the candidate power edge (U, W \ T) 

27  else if U ⊂ T then 
28  Add to L the candidate power edge (U, W \ S) 
29  else if W ⊂ S then 
30  Add to L the candidate power edge (U \ T, W) 
31  else if W ⊂ T then 
32  Add to L the candidate power edge (U \ S, W) 
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33  else if (U, W) is a clique then 
34  Add power node U to V′ and power edge (U, U) to E′ 
35  else 
36  Add power nodes U and W to V′ and power edge (U, W) to E′ 

37 foreach edge (u, v) ∈ E not yet covered by any power edge in E′ do 
38  Add the singleton power edge ({u}, {v}) to E′ 

39 Return G′ = (V′, E′) 

In the following, we introduce formally the algorithm with which the near-minimal 
power graph representation can be produced from an input graph. The algorithm, 
described in Algorithm 1, supports weighted graphs and requires as input the original 
graph G, and a minimum similarity threshold smin. The role of smin will be justified 
sufficiently during the detailed explanation of the algorithm that follows. The algorithm 
consists of a first phase that collects candidate power nodes and a second phase that uses 
these to search for power edges. In the first phase (lines 1–10 of Algorithm 1), candidate 
power nodes are identified with hierarchical clustering (Eisen et al., 1998) based on 
neighbourhood similarity. A candidate power node is a set of nodes that have neighbours 
in common. The similarity of two neighbourhoods is a generalised Jaccard Index 
(Rasmussen, 1992) on weighted sets. The similarity score is shown in equation (2). 

( )
( )

( )
( ) ( ), ,

( ) ( ), ,

min ,
( ), ( )

min ,

xu xvx N u N v x u v

xu xvx N u N v x u v

w w
s N u N v

w w

α
∈ ∩ ≠

∈ ∪ ≠

+
=
∑
∑

 (2) 

where N(u) is the neighbourhood of cluster u, wxu the weight of x in the weighted 
neighbourhood of u, and α the clique contribution to the similarity. The value of α is 
given by equation (3), in case min(wuv, wvu, wuu, wvv) > 0, and otherwise is 0. 

( )1
2 uv vu uu vvw w w wα = + + +  (3) 

The weight of a neighbour n in the weighted neighbourhood of cluster c is the average 
over all nodes in cluster c [equation (4)]. 

| |
nxx c

nc

w
w

c
∈=

∑  (4) 

For the identification of stars and other highly asymmetric bicliques, we add for each 
node v two sets to the candidate power nodes: its neighbourhood set N(v) and the set of 
common neighbours of the nodes in N(v), ∩v′∈N(v)N(v′), that contains at least v. Each of 
these clusters u is only added if its accumulated neighbourhood similarity is above the 
given threshold: s(N(u)) > smin, where smin is given as input to Algorithm 1. 

In the second phase (lines 11–38 of Algorithm 1) power edges are searched. The 
minimal power graph problem is to be seen as an optimisation problem to find the power 
graph achieving the highest edge reduction. The greedy power edge search follows the 
heuristic of making the local optimum decision at each step with the aim of finding the 
global optimum, or at least to come close to it. Among the candidate power nodes found 
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in phase one, each pair that forms a complete connected (bipartite) subgraph in G is a 
candidate power edge. The candidates abstracting the most edges are added successively 
to the power graph. If necessary, candidates are decomposed, e.g., Figure 2(b). 

3 Approach 

3.1 Co-authorship graphs with power graphs 

The first decision regarding the creation of co-authorship graphs is on the type and 
meaning of edges. When a paper has k authors, the two representation alternatives are 
either to add a hyperedge connecting the k author nodes, or to add simple edges 
connecting each pairwise combination of the k authors. Since power graphs do not 
support hyperedges we work with the second alternative. However, using hypergraphs 
and a hypergraph partitioning algorithm (Selvakkumaran and Karypis, 2003) is another 
option. The second decision refers to the weighting of edges. Although many existing 
studies on the co-authorship graphs model the co-authorship relation by an undirected 
and unweighed edge, in this work we want to model the strength of the relation between 
authors, by adding edge weights. An edge weighting scheme for the author graph has 
been also employed in Han et al. (2009), with very interesting results. 

The resulting weighted co-authorship graph is formally modelled as follows. Let the 
graph G = (V, WE), where V is the set of authors and a weighted edge 

1 21 2 ,{ ,  ,  }we w WEν νν ν= ∈  represents that authors ν1 and ν2 have co-authored 1 2,wν ν  
papers. Similarly, this representation can be used if hyperedges are used, as follows.  
Let G = (V, WHE), where V is the set of authors and a weighted hyperedge 

11 ,...,{ ,  ...,  ,  }nnwhe w WHEν νν ν= ∈  represents that authors ν1, …, νn have co-authored 

1,..., nwν ν  papers. An example of a bibliographic record and the resulting co-authorship 
graph and hypergraph is depicted in Table 1 and Figure 3, respectively. 
Table 1 An example of a bibliographic record 

Paper – id Authors 
p1 a1, a2, a3 
p2 a1, a2, a4 
p3 a1, a2 
p4 a3, a4 
p5 a3, a4 

Figure 3 The graph and hypergraph co-authorship models 
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3.2 Power edges information 

The most important contribution of the power graph model is its ability to group several 
nodes into power nodes and to aggregate edges into power edges. However, the 
knowledge that can be extracted from each of the three main power graph motifs, namely 
star, clique, and biclique may differ. In the star motif, a power edge connects an author 
with a set of co-authors. The clique motif corresponds to a clique of authors that 
frequently publish papers together and the corresponding power edge is a loop to the 
power node itself. Finally, in the biclique motif, a power node groups two or more stars 
and as a result the power edge connects two distinct author sets whose members have 
published papers together (one author from each set). 

Figure 4 A sample co-authorship power graph 

 

The usability of the clique motif is limited in our paradigm, since all authors inside the 
power node of the clique have already published a joint work in the past, so the synergy 
has already been materialised. However, a further analysis of a star motif will probably 
reveal potential synergies. As mentioned before, the power node in the star motif 
contains all the co-authors of a given author. All these authors have a common point of 
reference and, consequently, if their interests match, they can form cooperations. 
However, finding bicliques in the co-authorship graph is the most straightforward 
indication of a potential research synergy. Each author in one set of the biclique has  
co-authored one or more papers with all authors in the other set but not with the authors 
in his own set. This motif depicts a possible cooperation among authors inside each 
power node. Finally, power graph analysis supports the power node inclusion motif 
(Royer, 2010), when a power node (in our case a group of authors) contains another 
power node and some more distinct authors. The outer power node corresponds to a 
group of authors who have co-authored many papers, whereas the inner power node is a 
subset of the outer comprising authors who co-author more. Searching for potential 
synergies between authors in the inner node and the additional authors in the outer node 
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can be based on the similarity of interests and provides interesting results, as shown in the 
experimental section. Figure 4 gives an example of co-authorship information and the 
corresponding power graph. 

When the size of each power node in the biclique or the size of the power node in the 
star motif, or the external power node in the inclusion motif is large, then the authors 
inside the power node must be examined in terms of similarity of interests, as in these 
cases possible future research synergies may be found. In our model, similarity of 
interests is modelled as the similarity between their published works (i.e., between nodes 
that participated in the power edge creation). The algorithmic details of the proposed 
method are presented in the following section. 

3.3 Algorithmic description 

The algorithmic description of our method given a publication database D is presented in 
Algorithm 2. We assume that authors (the nodes in our graph) are in lexicographical 
order. The first step in our method (lines 1 to 8) is the creation of the co-authorship graph 
G from the database of papers D. As explained before, for each paper p in the database, a 
set of weighted edges is added (or updated) to the co-authorship graph. The second step 
(line 9) is the application of the power graph analysis algorithm to the original graph G 
and the creation of the power graph PG, which comprises power nodes (pn) that are 
either nested or form cliques, stars and bicliques. The final step of the algorithm 
comprises the examination of power edges (lines 10 to 14) and power nodes (lines 15 to 
20) and results in a list of power nodes which may contain potential research synergies. 
Algorithm 2 The enhanced power graph creation algorithm 

 Input: Database of papers D, empty graph G = {V, WE} 
 Output: A list of candidate power nodes CPN 
1 foreach Paper p ∈ D do 
2  foreach Author a ∈ p.authors do 
3   foreach Author b ∈ p.authors, b ≠ a do 
4    V.add(a); 
5    V.add(b); 
6    if WE.containsKey(E(a,b)) then 
7     WE.updateValueOf(E(a,b)); 

8    else WE.put((E(a,b), 1)); 

9 PG{PN, PE} = PowerGraph(G); 
10 foreach Power Edge pe ∈ PE do 
11  if pe.node1 ∈ PN then 
12   CPN.add(node1); 

13  if pe.node2 ∈ PN then 
14   CPN.add(node2); 
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15 foreach Power Node pn ∈ PN do 
16  foreach node n ∈ pn.nodes do 
17   pntemp = a new empty power node; 
18   if n ∉ PN then 
19    pntemp,add(n); 
20    CPN.add(pntemp); 

3.4 Complexity and implementation issues 

The computational complexity of our method is explained in the following. We assume 
that the database contains m papers written by n distinct authors, and that the resulting 
power graph contains pn power nodes. The first step, which is the creation of the initial 
co-authorship graph (G = {V, WE}, where V is a set of vertices and WE a map of  
edge-weight values), requires a single scan of the publication database. Given that the 
size of the graph does not exceed the size of the main memory, the complexity of the first 
step is O(m). 

The second step relies on the power graph algorithm, which is a two-phase 
procedure. In the first phase, the algorithm identifies potential power nodes using a 
Jaccard-based similarity metric on the neighbours of each node and a similarity based 
hierarchical clustering algorithm. For example, the similarity between two authors is 
maximum when they have written the same number of papers with the same co-authors. 
The second phase of the power graph algorithm performs a greedy search for  
power edges, by examining the problem of minimising the power graph structure  
as an optimisation problem. Since the details of the used power graph algorithm 
implementation are not known (http://www.biotec.tu-dresden.de/research/schroeder/ 
powergraphs/) we can simply assume that its complexity is relative to the complexity of 
the hierarchical algorithm [O(n2log(n)) if the priority-queue HAC algorithm is 
implemented (Manning et al., 2008)], and to the complexity of the greedy power edge 
search algorithm, which is linear to the number of power nodes (O(pn)). 

The final step performs pairwise comparisons (using the paper title information) 
between authors in each power node that is of interest (i.e., power nodes that are nested, 
or form bi-cliques, or belong to a star motif) as described previously. In the worst case, 
the complexity of this step is linear to the total number of power nodes (pn) and power 
edges (pe), in order for all the possible motifs to be checked. As a result, the complexity 
of the enhanced power graph creation method is O(m + n2 ⋅ log(n) + pn + pe + pn). Given 
that power graph reports an 80% reduction to the number of edges and nodes the 
resulting complexity is O(m + n2 ⋅ log(n)). 

The output of the algorithm is a set of power nodes from the original power graph, 
which contains authors that can possibly cooperate in the future. The selected power 
nodes can be highlighted in the visualisation of the power graph, or given as input to the 
author matching module, which examines author similarity of interests in terms of their 
papers’ context. 
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3.5 A walkthrough example 

In this section, we present a more detailed examination of the example shown in Figure 4. 
For simplicity, in this example, we assume that each paper has exactly two authors and 
corresponds to a single edge. Authors a1 and a2 have exactly the same co-authors (a3, 
a4, a5) but have never cooperated. The same holds for authors a3, a4 and a5 who have 
never worked together. This is depicted by a bi-clique in the power graph. In addition to 
the preview, author a3 has collaborated with a1, a2 and a6 to a10. For this reason, author 
a3 forms a star with his co-authors, who form a pair of nested power nodes (a1, a2 is 
inside the greater power node). Finally, all the co-authors of a31 form a star, the power 
node of which is of potential interest. All other authors that have cooperated with a single 
author are ignored. If a threshold value is added on the size of power nodes to be 
examined, we will be able to further distil the candidate power nodes and find more 
promising matches. 

4 Evaluation and results 

4.1 Experimental setup 

In order to provide a demonstration of our method, we employed the DBLP 
(http://www.informatik.uni-trier.de/~ley/db/) Computer Science Bibliography, which 
comprises more than 1.5 million publications. The database provides for each indexed 
paper the authors, title, venue and year of publication (see Figure 5 for a projected view 
of DBLP entries). The visualisation of the complete graph would not make any sense 
since the DBLP database contains publications from many different research fields. Thus, 
we have selected subsets of the DBLP dataset, which comprise papers published in the 
same conferences, and the same years. For the graphs’ presentation, we provide two 
alternative visualisations: one that contains all the power nodes and edges and one that 
contains only the strongest edges. 

Figure 5 Sample entries from the DBLP database (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

    Mining potential research synergies from co-authorship graphs 265    
 

    
 
 

   

   
 

   

   

 

   

       
 

Data processing is done as described in the previous sections: 

a we create the initial co-authorship graph from the selected subset of publications 

b we generate the power graph from the initial graph 

c we prune the weakest components of the power graph in order to improve the 
readability of the result. 

Finally, we present in details the most interesting structures in each power graph. 
In our experiments, we used the command line version of power graph analysis  

tool (http://www.biotec.tu-dresden.de/schroeder/group/powergraphs/ev_clt_usage.html), 
which is written in Java and exports graph visualisation in portable network graphics 
(PNG) and scalable vector graphics (SVG) formats. 

Figure 6 Authors power graph (top-5 database conferences) (see online version for colours) 
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4.2 Results on the DBLP data 

4.2.1 The database conferences 

In the first experiment, we process the DBLP publications from the top-5  
conferences in Databases3, namely: SIGMOD (http://www.sigmod.org/about-sigmod), 
VLDB (http://www.vldb.org), PODS (http://www.sigmod.org/the-pods-pages), ICDE 
(http://www.icde.org/), EDBT/ICDT (http://icdt.tu-dortmund.de/). The subset contains 
11,369 papers published since 1969. The papers have been written by 10,524 authors. 
Several papers have more than two authors, and several author pairs have co-authored 
more than one paper. In order to reduce the complexity and improve readability of the 
graph, we omit authors that have written only one paper in any of these conferences. The 
resulting graph finally contains 3,860 nodes (authors) and 15,382 edges (co-authorship 
entries). 

Figure 7 Pruned author-power graph (top-5 database conferences) (see online version  
for colours) 

 

After applying the power graph algorithm, the resulting graph shown in Figure 6 contains 
1,601 power nodes and 8,572 power edges. In this graph, power nodes contain authors 
that frequently co-author (have written more than threshold papers together), whereas 
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power edges connect individual authors or groups of authors to other groups, with whom 
they co-author (again above the same threshold) but less frequently. A modified version 
of the power graph, where the weakest power edges have been pruned away (using a 
higher threshold is presented in Figure 7 and uncovers interesting substructures of the 
original graph. 

Figure 8 Part of the pruned author-power graph (top-5 database conferences) (see online version 
for colours) 

 

Note: Star motif 

In Figures 8 and 9, we zoom on the power graph in order to present some of these 
structures. The potential research synergies must be searched in cases like the ones we 
highlight: 

a in Figure 8, the co-authors of an author that belongs in a start motif (e.g., the four  
co-authors of H.P. Kriegel, in bold face font), may cooperate with the authors in the 
power node of the star motif (e.g., authors in italics) 

b in Figure 9, the authors in a power node (or bi-clique), which is nested in another 
power node (e.g., C. Jermain and authors in bold face fonts), may cooperate with all 
other authors in the outer power node (e.g., authors in italics). 
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An additional piece of information that we can easily draw from power graphs are the 
author cliques (e.g., the co-authors of P. Kriegel in Figure 8) that correspond to authors 
who cooperate frequently. The cliques are easily distinguished from groups of authors 
that have cooperatively written several papers (e.g., the group of authors on the top of the 
big power node in Figure 9), which are closely placed in the graph but do not form a 
power node. 

Figure 9 Part of the pruned author-power graph (top-5 database conferences) (see online version 
for colours) 

 

Note: Power node nesting motif 

Figure 10 Pruned author power graph (SIGIR and SIGGRAPH conferences) (see online version 
for colours) 
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4.2.2 Multi-disciplinary graphs 

In the second experiment, we attempt to visualise the power graph of two research 
communities from different disciplines, namely computer graphics and information 
retrieval. More specifically, we select papers that have been published in SIGGRAPH 
(http://www.siggraph.org/) and SIGIR (http://www.sigir.org/), the top conferences in 
computer graphics and information retrieval respectively. The selected subset comprises 
3,568 papers written by 5,386 authors. Following the same author pruning strategy, we 
produce a graph that contains 1,303 nodes (authors) and 2,769 edges (co-authorship 
entries). The respective power graph shown in Figure 10 contains 1,391 power edges and 
523 power nodes, and forms two distinct, compact graph regions (IR community is on the 
left and graphics community on the right). All the small subgraphs between the two main 
regions belong to one or other field, do not connect to the power nodes of each subgraph 
and have been placed by the power graph drawing module in between the two sub graphs 
only for presentation purposes (i.e., they are not special power nodes that lie between the 
two research fields). 

4.2.3 Measuring similarity based on content 

In this final experiment, we further examine the cases of possible cooperation between 
authors by measuring their similarity of interests based on the titles of their publication 
record. We employ the OMIOTIS (http://omiotis.hua.gr) measure (Tsatsaronis et al., 
2010) and the methodology we presented in Tsatsaronis et al. (2009). For each candidate 
pair of authors, we measure the average semantic relatedness between their published 
works in the respective conferences, then we sort candidate author pairs in decreasing 
similarity score. The candidate pairs are selected as described in Section 4.2.1, taking 
care to remove candidates that have already collaborated in the past. 

The top results for the database conferences subset are presented in Table 2. Authors 
in the first positions have common co-authors, but have not co-authored a paper yet. A 
manual examination of their publication record reveals that their interests match. For 
example, the first pair of authors works on business process modelling, the second pair 
works on privacy, and the third on SQL server’s optimisation. 
Table 2 Top candidate pairs, ranked by similarity 

Author A Author B Similarity 
Daniel_Deutch Anat_Eyal 0.222 
Kristen_LeFevre Alexandre_V,_Evfimievski 0.179 
Ming-Chuan_Wu Steve_Herbert 0.156 
Babu_Krishnaswamy Aleksandras_Surna 0.154 
Alon_Y,_Halevy Chen_Li 0.152 
Ming-Chuan_Wu Aleksandras_Surna 0.148 
Jorg_Sander Daniel_A,_Keim 0.139 
Conor_Cunningham Steve_Herbert 0.138 
Sandeepan_Banerjee Anand_Manikutty 0.136 
Yanif_Ahmad Magdalena_Balazinska 0.135 
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5 Conclusions 

In this paper, we have introduced a novel approach for the organisation and the efficient 
presentation of bibliographic database contents. The contribution of our approach lies on 
the use of a graph reduction method that facilitates the efficient visualisation of the dense 
co-authorship graph, the identification of potential research synergies based on the 
analysis of the power graph, and the ranking of potential co-author pairs by similarity of 
interests. More specifically, we have demonstrated how the use of power graph analysis 
can uncover potential future research synergies between authors. This modular approach 
helps us to avoid the burden of finding the optimal clustering and classification scheme 
for bibliographic data organisation. As a proof of concept, we demonstrated some of the 
capabilities of our approach in the DBLP data and we believe that it can be fruitfully 
explored in several other data mining tasks. It is on our next plans to apply the same 
approach to more bibliographic networks as well as to other social networks, and to study 
the evolution of the graphs over time based on the comparison of different graph 
snapshots taken in different years. 
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Notes 
1 Co-author Path in Microsoft Academic Search 
2 Co-author Graph in Microsoft Academic Search 
3 As provided by Microsoft Academic Search in http://academic.research.microsoft.com 


