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ABSTRACT

Objective: This work explores the performance of popular classification methods
and multivariate indices on binary classification tasks, for datasets that comprise
discrete valued features. This is directly applicable in the evaluation of the diag-
nostic accuracy of composite health related indices or screening tests, which com-
bine multiple discrete-valued attributes (variables), usually using a weighted sum.
Methodology: Several classification methods (e.g. logistic regression, classification
trees, neural networks, support vector machines, ensemble classifiers etc) and multi-
variate indices that combine feature weighting techniques, are evaluated in this study
using both simulated and actual medical-dietary data collected from the “ATTICA
study” in Greece. A variety of scenarios that modify the discrete values’ distribution
parameters of the variables, and the number of variables as well as, are tested. All
methods were assessed as to their classification performance by using a set of classi-
fication validity criteria such as: area under the ROC curve, true positive and true
negative rates, positive and negative predictive value. The predictability of methods
and the statistical significance of the results are evaluated using Monte-Carlo cross
validation. Results: Results indicate that specific classification methods outperform
all others in almost all the validity criteria and they also perform better than multi-
variate indices in certain cases, with regards to the data distribution, the number of
features used and the number of their possible values. However, multivariate indices
demonstrate a better performance when the number of features is small and the
number of possible values in these features is also small.Conclusion: This work’s
findings propose a methodology for selecting more suitable techniques for predict-
ing the clinical status of a person in the case of general or specific populations,
depending on the data nature.

KEYWORDS

Binary Classification; Discrete Variables; Ordinal Features; ROC; AUC; Logistic
Regression; Classification Trees; Neural Networks; Support Vector Machines,
Classifier Ensemble

1. Introduction

The binary classification of living beings (e.g. to health or unhealthy), based on charac-
teristics measured on a discrete scale, is an objective of many different scientific fields,
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such as medicine, psychometry, dietetics, etc (Carlsson, 1983; Jackson, [1970; Kant),
1996). This dichotomous classification was traditionally performed in health sciences
with the aid of health indices (Bach et al., [2006; Beck et al., [1961; [McDowell, 2006).
Health related indices are quantitative variables that holistically assess a person’s clin-
ical condition by converting information usually from a variety of different attributes
into a single-dimensional vector.

Discrete health indices are produced by the sum of discrete component variables
that may be derived from discrete or continuous scale variables. An example of a
discrete-scale variable is the number of cardiovascular events experienced by a patient
and an example of a continuous-scale variable is the body mass index, which for conve-
nience is appropriately categorized as ”fat”, ”normal”, ”overweight” and ”obese” with
corresponding limits proposed by official health organizations, creating a hierarchical
variable. Because of the ease of evaluating a feature in a discrete way, discrete scales
are widely used (e.g., it is difficult for a person to accurately measure his training
intensity per day, while it is easier to describe as mild, moderate or intense) although
they provide less valid results than the continuous scales (Likert, 1952]).

Although data mining is almost at the end of its third decade of research, and it
has become popular in various fields during the last two decades, it is only recently
that health scientists have invested on it (Tomar and Agarwal, [2013; Yoo et al., [2012).
This is probably because supervised data mining techniques, such as classification and
regression, need a lot of data to be trained and achieve a comparable performance to
existing health indices, so they apply only on large cohort studies (Austin et al., 2013;
Boucekine et al., [2013), or data from medical registries (Delen et al., 2005; Varlamis
et al.l 2017). It is also because of the limited interpretability of certain data mining
based models, which in turns limits their applicability in certain cases. Classification
and regression, are the two techniques that have been mostly applied on medical data
in order to classify cases (Tang et al. 2005) or predict risks (Bottle et al.l 2006)),
whereas clustering (Khanmohammadi et al., 2017; Yelipe et al., 2018) and association
rules (Doddi, 2001; Sanida and Varlamis, [2017)) are applied more rarely and mainly
for their descriptive capabilities, that let researchers better understand or pre-process
the dataset in hand.

The aim of the current study is to evaluate the performance of health related indices
and classification algorithms under various dataset setups, given that they comprise
only discrete valued features. For this, we comparatively examine classification meth-
ods and health related indices in terms of their classification accuracy on general
population datasets, which comprising patients and non-patients. The research ques-
tion is whether data mining (classification) methods can improve the sensitivity and
specificity of existing health related indices (Kourlaba and Panagiotakos|, [2009), in
what extend and under which conditions. Synthetic and real data are used to study
the aforementioned research question.

Since health indices are constructed specifically for each specific health case and
dataset, in this work, we introduce a methodology for the data driven creation of
composite indices. Their performance is compared against some well-known classifica-
tion methods such as logistic regression, classification (decision) trees, random forests,
artificial neural networks, support vector machine techniques and nearest neighbors
classifiers as well as an ensemble classifier (meta-classifier) that combines all the pre-
vious methods.

In summary, the main contributions of this work are:

e a generic methodology for the construction of composite health indices for the
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classification of datasets with discrete valued features,

e the evaluation of classification ensemble methods that combines more than one
classifiers in order to improve individual classifiers performance,

e the evaluation of plain and ensemble classification methods and composite health
related indices on synthetic and real datasets, with varying features.

e an open source software solution for the generation and evaluation of synthetic
datasets that comprise discrete valued features, which can be used by future
researchers to validate and extent the results of our study.

In section |2 that follows some related work is provided in order to identify simi-
larities and differences with previous efforts in the recent literature. In section [3| the
weighting process for the multivariate indices and the classification methods employed
in the study are briefly described. Section [4| explains how the synthetic data were
generated, how the “ATTICA study” data were collected and what evaluation crite-
ria have been used in this study. Section [5| presents the results on synthetic data by
providing the performance of the classification algorithms and indices for a varying
number of discrete values and features, for a varying population size and ratio between
diseased and healthy, as well as for different distribution parameters used. In section
[6] the results of our work are discussed and an interpretation from a methodological
perspective is attempted and section [7] summarizes our findings and concludes with
directions for future work.

2. Related Work

Most of health related indices are combinations of individual attributes designed to
measure specific medical and behavioral characteristics that are ambiguous or, in some
cases, even impossible to be quantified directly and objectively (Bansal and Sulli-
van Pepel 2013). There is a variety of clinical situations that cannot be measured
with absolute precision, such as depression, anxiety, pain sensation of a patient, and
the quality of eating habits (Huskisson, [1974; [Trichopoulou et al.l 2003; [Zung, 1965).
For clinical features such as the aforementioned there is a need of appropriate meth-
ods/tools to be discovered that quantify them on a discrete scale in order to classify
individuals of a general population as patients or healthy. Even when the clinical fea-
tures can be accurately measured with the appropriate measurement tools, such as
hematological and biochemical markers, discretization contributes in the reduction of
noise from the original readings (Ding and Peng; |2005)).

Composite indices measure specific clinical features by using a suitable cut-off point
(e.g., optimal separation point (Youden) [1950)). A health related index is usually
synthesized by the sum of m component variables (features), where each of these
features X;,7 = 1,2,...,m expresses a particular aspect relative to the individual’s
clinical status. The scores of the m components are summed, with or without weighting,
to provide an overall score. In the case of a composite health index T, the variables
X;,1=1,2,...,m can be either discrete or continuous. According to the index’s value,
the respective subjects examined are classified as either healthy or unhealthy, in terms
of the appropriate diagnostic threshold for a particular disease (McDowell, 2006)). In
recent literature, several methods have been proposed to improve sensitivity, specificity
and precision of these tools (Bersimis et al., [2013). More specifically, a health indice’s
diagnostic ability is improved by increasing the support of the component variables
(Bersimis et al.,|2017a)) as well as by assigning weights to them (Bersimis et al., 2017b).
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Composite health indices have been widely used in the medical field. For exam-
ple, for predicting risk from cardiovascular disease by using mathematical/statistical
models, explanatory variables such as age, gender, smoking, nutritional habits etc are
associated with the existence of a chronic disease. Such indices have been used in
prospective epidemiological studies (e.g. Framingham Heart) (Wang et al., 2003; Wil-
son et al., [1998), where the aggregation of the component variables provides the final
index’s score for the 10-year risk of a cardiovascular event (Dagostino et al. 2008).
In the field of psychometry for the assessment of depression, there are a number of
indices in the literature, such as the Hamilton Rating Scale for Depression (Hamilton,
1960) and the BDI (Beck Depression Inventory) (Beck et al., [1961). The aggregation
of variable components provides the final index’s score for depression estimation. The
scoring of the above-mentioned indices is conducted by assigning high values in at-
titudes consistent with the condition of depression when they correspond to a high
frequency and vice versa (Radloff, [1977). In the field of dietetics, a variety of indices
have been constructed for evaluating the consumption’s frequency and variety of food
groups, such as the Diet Quality Index (DQI) (Patterson et al., 1994)) and the Healthy
Eating Index (HEI) (Kennedy et al., 1995).

For the classification of persons to patients and healthy, apart from the use of health
indices that provide a univariate usually segregation approach, there are some well-
known statistical multivariate methods. In particular, several statistical classification
methods such as Logistic Regression (LR) (Vittinghoff et al., 2011), Classification and
Regression Trees (CART) (Breiman et al., |1984), Neural Networks (NN) (Haykin)
1994)) and data mining elements such as machine learning and Support Vector Ma-
chines (SVM) (Kruppa et all 2014) aiming at distinguishing two or more different
groups in data sets that have a specific feature or not. The above methods have been
developed mainly in the last decades when the application of Informatics’ methods
became an irreplaceable part of the medical research, resulting in the creation of
Bioinformatics, which is a very wide interdisciplinary branch, aiming at studying and
interpreting various biological phenomena. In addition, Biostatistics is the specialized
scientific branch of Statistics that deals with the application of statistical methods,
such as the management and analysis of numerical data, in the wider field of medicine
and biological research.

Our work can be compared to (Maroco et al.,|2011) since it extensively evaluates the
performance of classification methods in terms of accuracy, sensitivity and specificity
using a real dataset. In addition to this, we perform an extensive evaluation on syn-
thetic data and provide the tool to future researchers for reproducing or extending our
study. The current work extends previous works on the same dataset (the ATTICA
study), which apply classification methods for risk prediction (Kastorini et al., 2013}
Panaretos et al., [2018)). However, in this study, it is the first time that an ensemble
classification method that combines the merits of multiple classifiers is applied on the
dataset.

3. Materials and methods

The main objective of this work is to evaluate the predictive performance of classifi-
cation methods and health indices in the case of classifying a binary outcome variable
based on discrete input variables. This section briefly presents the proposed health
index construction methods, which apply to any dataset comprising discrete input
variables and a binary output (Section , highlights the classification methods em-
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ployed in our study (Section [3.2)), and concludes with the proposed classifier ensemble
method (Section [3.2.6]), which considers all the available classifiers in tandem, in order
to perform the binary prediction.

3.1. Data driven health index construction

This study proposes a data driven composite indices’ construction methodology, which
targets on deriving the corresponding weighting formulas from logistic regression. More
specifically, four discrete weighting methods w;;,i = 1,2,...,m,j = 1,2,...,4 for each
component are proposed developed by using the odds ratios (OR) of univariate and
multivariate logistic regression, as well as, by using the deviance statistic as modi-
fying factor. These produced weighted indices (77,75, T3,Ty) are tested in simulated
and real data. Moreover, weighted index 7T} is constructed by using the odds ratios of
each component obtained from univariate logistic regression model (ORy 1 r), whereas
weighted index 75 is constructed by using the odds ratios of each component ob-
tained from multivariate logistic regression model (ORy1,r). Weighted indices T3 and
Ty are constructed by using the aforementioned odds ratios in combination with the
deviance statistic (DS) obtained from the corresponding logistic regressions. The de-
viance statistic (DS) i.e. the deviation between the theoretical model and the estimated
model, is used for amplifying weights for the component variables that corresponds to
lower deviation scores.Therefore, the weighted indices are defined by Equation

m
Tp=)Y wiXii=1,2.,mj=12...4 (1)
i=1

where each w;; depending on the weighting method is given by the equations that
follow:

wyy = < \OFuer)i . (ORuir)i @)
Y Y (ORurr)i’ T Y (ORMLR)
(ORyLr/DS); ~ (ORMLR/DS);

Wy3 =

Yot  (ORyLr/DS);’ = >t (ORyMLR/DS);’
(4)

where i = 1,2,..,m corresponds to the components variables’” multitude (Bersimis
et al., [2017D]).

3.2. Classification methods for discrete data

3.2.1. Logistic Regression

The logistic regression model is a non-linear regression model applied in classification
problems, where the dependent response variable Y is categorical (not quantitative)
with two or more categories. In the present study, a Binary Logistic Regression (where
for example Y=1 means presence of a health risk and Y=0 means risk absence in a
medical dataset) is applied. The simple logistic model is given by the following relation
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(Vittinghoff et al., 2011)):

e t+BX;

—(a+Bx,))

where P(Y = 1/X;) express the conditional probability of a diseased individual.

3.2.2. Classification tree analysis

Classification (decision) trees (Quinlan, |1986) constitute a highly interpretable ma-
chine learning technique, which uses a set of instances with known input and output
variables to train a model, which can then be used to classify unknown instances. The
learned models are represented using suitable graphs (tree form), which can also be
interpreted as sets of rules (one rule for each path from root to the tree leafs) and
can as well operate as decision models. As a prediction tool, classification trees are
intended for problems that aim in predicting the right class for an unknown instance,
choosing from one or more possible classes. During the training phase, they optimize
the division of the known instances (training samples) to the tree leafs so that each
leaf contains samples from the same class. The information gain (or KullbackLeibler
divergence (Kullback and Leibler, |1951)) is one of the criteria employed to decide on
the best split at each step. During the operation phase, the unknown instance is clas-
sified using the classification rules of the same tree and the label of the leaf defines its
predicted class. Classification trees can work both with discrete and continuous data,
although they usually discretize continuous feature in their pre-processing phase.

In this work, several input variables that correspond to discrete-valued dietary fea-
tures are used in the real dataset and the output variable is also discrete and binary
(the aim is to classify individuals as patients or not). However, when the input and
output variables are continuous in nature, then it is possible to use regression tree
analysis methods (e.g. CART (Breiman, [2017))) and learn the discretization limits of
the output variable ((Bersimis et al., 2017b))).

Another limitation of decision tree methods is that they poorly operate in high-
dimensional dataset, that comprise many features. Since the trees are usually shallow,
they employ only a few of the features in their decision model with the risk to loose
useful information from other features. For this reason, several multi-tree models, also
known as forests, have been introduced in the literature and applied in classification
problems, outperforming simple decision trees (see Random Forest (Liaw et al., 2002)
and Rotation Forest (Rodriguez et al., 2006|) algorithms). Such methods, are also
known as classifier ensemble methods, since they combine more than one classifier in
order to reach a decision. However, the classifiers in such ensembles are all of the same
type (trees), whereas in this work, we experiment with a proposed mixed classified
ensemble.

3.2.3. Bayesian (probabilistic) classifiers

Probabilistic classifiers assume generative models, in form of product distributions
over the original attribute space (as in naive Bayes) or more involved spaces (as in
general Bayesian networks) (Kononenkol [2001). They output a probability for each
unknown instance to belong to each of the classes and have been shown experimentally
successful on real world applications (Pattekari and Parveen, [2012), despite the many
simplified probabilistic assumptions. The Bayesian classifiers rely on Bayes’ theorem,

54



which mainly assumes a strong (naive) independence between the input features.
Given an unknown instance to be classified, which is represented by a vector x =

(21, ...,xy) in the space of n features (independent variables), the classifier assigns to
this instance probabilities: p(Cy | z1, ..., 2, ) for each of k possible outcomes or classes
Cy.

For a large number of features (n), or for features with many discrete values the
model based on probabilities is infeasible, since it will require too many instances to
train (to learn probabilities). However, using Bayes’ theorem, the conditional proba-
bility can be expressed proportionally to the product of all conditional probabilities
of the classes given the feature values of the unknown instance.

n

p(Cy | @1, x) e p(Cy) [ [ pli | C) (6)

=1

As a result, the unknown instance z is classified to the class C that has the highest
conditional probability according to equation [6]

3.2.4. Artificial neural networks

Artificial neural networks (ANN) are applied in a variety of scientific fields such as
medical diagnosis, speech & pattern recognition etc (Cho et al., 2014; Nigam and
Graupe, [2004)). ANN is a computing scheme representing partly the biological neural
networks existing in human or animal brains, expressed by connected nodes (artificial
neurons) organized properly in layers. All artificial neurons are connected and able
to transmit signals, usually real numbers, through their connections (synapses) re-
sulting to an output calculated suitably by a non-linear function according the initial
inputs based on specific weights assigned to all neurons. ANN’s greatest advantage is
expressed by its ability to improve its performance by learning continuously by past
procedures (Sutton et al., [1998).

3.2.5. Support Vector Machines

Support vector machines are a supervised classification method, which is preferred for
binary classification problems with high dimensionality (i.e. a large number of features)
(Cortes and Vapnik, |1995). An SVM uses the training data , in order to build a model
that correctly classifies instances with a non-probabilistic procedure. First, the space
of the input samples, is mapped onto a high dimensional feature space so that the in-
stances are better linearly separated. This transforms SVM learning into a quadratic
optimization problem, which has one global solution. The optimal separating hyper
plane in this new space must have the maximum possible margin from the training
instances it separates from the two classes and the resulting formulation, instead of
minimizing the training error seeks to minimize an upper bound of the generalization
error. SVMs use non-linear kernel functions to overcome the curse of dimensionality
(Azar and El-Said} 2014} |Ding and Peng, 2005). They can handle both discrete and
continuous variables as long as all are scaled or normalized. The ability of SVMs to
handle datasets of large dimensionality (many features) made them very popular for
medical data classification tasks. They are usually employed as is in binary classifica-
tion tasks, but there is ongoing work on optimizations that can further improve SVM
classifiers performance (Shen et al., 2016; Weng et al., 2016).
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3.2.6. Meta-classifier ensemble

Ensemble classification methods are learning algorithms that construct a set of classi-
fiers and then classify new data points by taking a (weighted) vote of their predictions
Dietterich| (2000). Voting is the simplest form of a classifier ensemble. The main idea
behind Voting is to use the majority vote or the average predicted probabilities given
from conceptually different machine learning classifiers to predict the class labels. Such
a classifier can be useful for a set of equally well performing model in order to bal-
ance out their individual weaknesses. Random and Rotation Forest algorithms are
also considered ensemble methods, but they combine more classifiers of the same type
(decision trees). Gradient Boosting (Friedman, 2001) is a meta-classifier that builds
an additive model in a forward stage-wise fashion, which allows for the optimization of
arbitrary differentiable loss functions. In each stage the algorithm trains a set of binary
regression trees on the negative gradient of the binomial or multinomial deviance loss
function. Gradient Tree Boosting (Hastie et al., 2001) or Gradient Boosted Regression
Trees (GBRT) is a generalization of boosting to arbitrary differentiable loss functions.
They have good predictive power and robustness to outliers in output space, but have
increased complexity and phase scalability restrictions.

4. Experimental evaluation

This paragraph includes the methodology for the generation of synthetic data (section
[4.1)), the data collection method and the details of the ATTICA study dataset (section
, as well as, the proposed methods accuracy evaluation measures (section. The
code for generating the synthetic dataset and running the classification algorithms is
available at BitBucketll

4.1. Synthetic data generation

In order to evaluate the performance of composite indices and classifiers, we perform
multiple tests, using various scenarios with regards to the input features, such as the
distribution of each input variable and the number of their partitions, the number of
samples in the population and the number of input variables in the dataset. For this
reason, we developed a Python script for generating synthetic datasets, using several
parameters, as explaining in the following.

First, we parametrized the variables’ partitioning (k) (i.e. the possible values an
input variable can take, ranging from 1 to k), which for simplicity was the same for
all variables in our experiment

Second, we employed a skewed discrete uniform distribution in all variables, with
different mean (meanpos, meanneg) and deviation (stdevpos, stdevneg) for the distri-
bution of diseased (positive) and non-diseased (negative) individuals. In our experi-
ments we use the same shift of the mean (higher than the normal mean for positive
samples and lower than the normal mean for negative samples), which however is pro-
portional to k (meanshift = % + A (% — 1), where \ defines the ratio of the
shift). For example, the distribution of values (for positive and negative samples) in an
attribute of the generated dataset for k=5, stdevpos = stdevneg = 1 and respectively

Thttps://bitbucket.org/varlamis/discretedatagenerator
2The code can be easily expanded to support the use of a vector or k; values, where 4 is the number of input
variables, instead of a single k
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Figure 1.: Value distribution between positive and negative samples for k=5.

meanpos = 3.4 and meanyey = 2.6 is similar to that depicted in Figure

Third, we variated the hypothetical population ratio between diseased and healthy
individuals (pos,neg respectively). Finally, we parametrized the population size
(samples) and the number of input variables ( features).

Modifying the aforementioned parameters leads to a dataset that simulates the
dataset perspective of a real survey.

4.2. ATTICA study - Dietary data collection

All methods and indices are also evaluated on real data, more specifically on data from
the ATTICA epidemiologic study that took place in the Greek region of Attica within
2001 and 2002 (Pitsavos et al. 2003)). At the beginning of the study, all participants
were found healthy, free of any cardiovascular disease and during the study period,
the consumption frequency of food groups was measured for the following food groups:
cereals, fruits, nuts, vegetables, potatoes, legumes, eggs, fish, red meat, poultry, full
fat dairy products, sweets and alcohol (measured in times/week consumed). From all
participants in the ten-year follow up of the ATTICA study, we excluded those having
missing values in any of the food groups, in order to avoid any missing values issues.
From the 700 individuals that finally used in our study, 78 have reported a cardiovas-
cular disease in the 10-years and 622 were categorized as healthy. This resulted in an
unbalanced real dataset with the ratio of healthy to diseased being approximately 1:8.

The food consumption information was the only information used for classifying
individuals to be healthy or non-healthy, with regards to the risk of occurrence of a
cardiovascular disease within the 10-years period. More specifically, all variables corre-
sponding to the aforementioned food groups were measured on a continuous scale, by
counting portions per week. Then data were standardized using z-score and discretized
by dividing the range of values into fixed-width intervals, depending on the desired
number of partitions (k). This way, discrete data were produced with 3, 5, 7, 9 and 11
partitions each.

4.3. Evaluation of classification performance

The diagnostic ability of a classification procedure is evaluated usually by using: i)
accuracy (True Rate - TR) and the area (AUC) under the receiver operating charac-
teristic curve (ROC), which is produced by mapping two-dimensionally the conditional
probabilities Sensitivity (True Positive Rate - TPR) and 1- Specificity (True Negative
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Rate - TNR), and ii) the Positive Predicted Value (PPV) and Negative Predicted value
(NPV), in a specific cut off point. The value of Youdens J statistic (Youden, 1950) is
a criterion for selecting the optimized cut off point of a diagnostic test, by maximizing
the sum of sensitivity and specificity.

If we assume a random sample of diseased and non-diseased persons, who are clas-
sified by using a suitable discriminating method, four outcomes may occur that are
presented in a 2x2 contingency table that includes:

e True characterized cases: the true positive cases (a) and the true negative cases

(d).

e False characterized cases: the false positive cases (b) and the false negative cases

().

Table 1.: 2x2 Contingency table for binary classification health cases. Green and red
color indicates correct and incorrect classification, correspondingly.

True Clinical Status
Positive (Y=1) | Negative (Y=0)
. (a)
(]1;?52;:;) True Positive a+b
Cases (TP)

Predicted Clinical Negative (d)

Status by the diagnostic test (Healthy) True Negative c+d
Cases (TN)
b+d a+b+c+d=N

A test’s sensitivity expresses the conditional probability of positives cases that are
correctly identified as such, whereas specificity expresses the conditional probability
of negative cases that are correctly identified as such. In addition, a test’s positive
predicted value expresses the conditional probability that a person with a positive
examination is truly ill, and, negative predicted value expresses the conditional proba-
bility that a person with a negative examination is truly healthy (Daniel and Holcomb,
1995)). Finally, accuracy expresses the conditional probability of positives or negative
cases that are correctly identified as such (Daniel and Holcombl, |1995)). The prediction
accuracy was evaluated by using cross validation methods, such as 10-fold or Monte
Carlo with a large number of repetitions and a randomized split (e.g. with 70:30 train-
ing/test ratio). More specifically, the prediction performance was evaluated for each
method by separating initial synthetic data into training set and test set by using each
partitioning technique. The process was performed 100 times and AUC average values
are presented, along with their confidence intervals.

For evaluation purposes, we added two parameters that concern the train/test split
ratio (testpercentage) and the number of repetitive (Monte Carlo) cross validations
(iterations).

5. Results

5.1. Results on synthetic data

The aim of the first experiment is to evaluate the performance of the different classi-
fication algorithms and multivariate indices, using several criteria. For this purpose,
we use the dataset generator with specific parameters that simulate a typical case of
a real world dataset with discrete valued attribute. We choose the number of possible

10
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Figure 2.: The performance of the classification algorithms and indices.

values (we call them partitions) for all attributes to be from 1 to 5 (i.e. k=5), used a
value of A = 0.2 which results to meanpos = 3.4 and meanneg = 2.6 and the same
standard deviation for positive and negative samples (stdevpos = stdevneg=1). The
distribution of randomly generated values in the 10 features (feat=10) resembles that
of Figure [l We assumed a variety of samples with 1000 hypothetical individuals and
a 1:4 positive to negative ratio (i.e. 200 patients and 800 healthy).

In the dataset that we generated, we repeated a random 70:30 train/test split 100
times and report the average values (and standard deviation). The results are sum-
marized in the plots of Figure [2| that contain the six evaluation metrics (accuracy,
AUC, sensitivity - TPR, true negative ratio - TNR, positive predictive value - PPV
and negative predictive value - NPV) for each of the classification algorithms (logis-
tic regression LR, Decision trees - DT, Support Vector Machines -SVM, Multi Layer
Perceptron neural network -NN, Gaussian Naive Bayes classifier - NB, k-nearest neigh-
bors classifier - Knn, Random Forests - RF, Gradient Boost classifier - GB) and the
multivariate indices (ULR, MLR, ULRDS and MLRDS). The default parameters have
been employed for all classiﬁersﬂ in order to avoid biasing the results, with parameter
tuning.

The results of Figure [2| show a good accuracy performance for all methods (0.81-
0.89), with Naive Bayes (NB) having the highest accuracy from all methods and SVM

3We encourage reader to refer to the Sci-kit learn API documentation for more details on the default value
parameters for each algorithm http://scikit-learn.org/stable/modules/classes.html
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Figure 3.: AUC and Sensitivity for different k values.

and Gradient Boost ensemble classifiers to follow. However, Naive Bayes suffers from
low sensitivity, compared to other methods. On the contrary, the multivariate indices
have a high sensitivity and high AUC values (the best among all methods), which
is very important when searching for the minority of positives in a population. The
multivariate indices suffer from low positive predictive values, which are probably due
to the number of false positives they introduce.

In the second experiment, we keep all other values constant and modify the number
of partitions (k in the discretization step, or assuming that the discrete variables take
values that range from 1 to k). Although we test all the algorithms, in Figure |3| we
focus on the algorithms that performed better in the first experiment. From the results
in Figure [3| it is obvious that as the number of partitions (k) increases, the AUC and
sensitivity performance of the classifiers increase respectively. This was expected, since
with more partitions (i.e. possible values for a discrete variable) the problem of class
separation becomes easier. This finding is in agreement with earlier work by Bersimis
(Bersimis et al., [2013) where it was proved that partition’s increase corresponds to
sensitivity increase. However, some algorithms always perform worse than others (e.g.
decision trees and logistic regression perform worse than Gradient Boosting ensemble
classifier, SVMs or Naive Bayes). Data driven indices such as M LRDS, which was
constructed from the multivariate logistic regression model perform better than all
other algorithms, even than Naive Bayes or SVM, although, for higher k values there
are no significant differences in their performance. In this particular set of experiments
on synthetic data, the performance of the very simple method of Naive Bayes is ex-
tremely good. This happens because Naive Bayes is based on the naive assumption
that the features are orthogonal (non correlated) to each other, which normally is not
valid in a real dataset. The way we generated the synthetic dataset results in this
orthogonality of features and justifies the high performance of Naive Bayes.

The third experiment examines the effect of the number of features (feat) in the
classifiers’ performance. For this purpose we repeat the experiments of datasets with 5,
10, 15, 20 and 50 features, using five discrete values (k=5) in all cases. From the results
in Figures [4] we notice that decision trees cannot handle the high dimensionality of the
dataset, which is a known restriction from the literature. Similarly, logistic regression
demonstrates a low performance, which improves, but slightly, when the number of
features increases. Ensemble classifiers such as Random Forests (not in the plots) and
Gradient Boost manage to cover the high dimensionality by training more than one
models with a subset of the dimensions each time, but still perform worse than SVMs.
Finally, the performance of Naive Bayes (with the assumption of orthogonality) and
SVM improves in high dimensions and outperforms that of multivariate regression
indices. The latter are ideal for datasets with a few discrete valued features but reach
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a performance upper bound above 20 features.

The aim of the fourth experiment was to examine the effect of the population size to the
performance of the different classification methods. Using the same configuration as in
the first experiment but with a population varying from 100 to 10,000 instances we get
the results depicted in Figure [l The results show a significantly better performance
for the MLRDS classifier, but all classifiers tend to improve their performance as the
population size increases. The logistic regression method improves the most by this
increase in the population size, which probably means that it needs more data to be
trained than other methods. However, it is far from the performance of MLRDS.
The fifth experiment examines the effect of the ratio between healthy and patient
samples in the dataset. It is very unusual in medical datasets to have a balance in
the number of patient and healthy instances, and this adds restrictions to several
classification methods. In this experiment, we keep the same configuration as in the
first experiment but we modify the ratio of patient:healthy in the following values: 1 : 1
(balanced), 1:2,1:4,1:9. The results in Figure |§| show a drop in the performance of
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all algorithms for ratios lower than 1 : 4 (25% patients in the dataset). It is interesting
to note the increase in performance of MLRDS for the 1 : 4 ratio (10% patients in
the dataset) and its significantly better performance for highly unbalanced datasets
(ratios 1: 9 or 1:95).

The last experiment on synthetic datasets examines the effect of the separation of the
distribution of feature values between positive and negative instances as determined by
the X\ parameter. Once again, we keep the same configuration as in the first experiment,
but modify A from 0.1 to 1. The results in Figure [7] show the poor performance of
Logistic regression and Decision Trees for small A values, where the separation problem
is harder. They also show that Multivariate indices achieve the best performance. We
expect the classifiers’ performance to improve, since the problem is easier when the
distributions of values for positive and negative samples are well separated, and this
happens for all methods. However, results show that Decision Trees perform worse
than other methods for higher A values. This bad performance is probably due to the
use of default parameters for the decision tree algorithm and can be possibly improved
with the proper parameter tuning, which however is outside the scope of this work.

5.2. Results on real data

The results of the evaluation of all algorithms on the ATTICA study data, are depicted
in Figure

Although the accuracy of data mining algorithms is higher than that of the multivariate
indices, this is mainly due to their high true negative ratio (TNR). The performance
of multivariate indices is more stable in all metrics and they demonstrate slightly
higher AUC values than the data mining algorithms. More specifically, data mining
algorithms seems to fail in the criterion of true positive ratio (TPR), whereas, achieve
slightly greater values in negative predicted value (NPR). A more careful examination
of the TPR subplot shows that Decision Tree classifier and Naive Bayes, which usually
work better with discrete data, outperform all other data mining techniques in TPR
and rank after the multivariate indices techniques in AUC.

Further experiments with less and more fine-grain discretization (k from 5 to 51) shows
that the sensitivity (TPR) of the multivariate indicesﬂ is in average much higher than
that of the other classifiers, even of the Decision Trees classifier, that comes second.
In terms of AUC, the MLRDS index and the Gradient Boost classifier ensemble are
slightly better, but not significantly, than other methods, and have small fluctuations
(in the third decimal) for higher k values.

4only the MLRDS index is depicted in Figure @, but all other indices behave similarly.
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6. Discussion

Health indices are extensively used in health research fields such as cardiovascular risk
prediction (Wang et al., |2003)), depression evaluation (Zung), |1965) and nutritional
assessment (Patterson et al., [1994) by measuring diseases’ specific aspects and calcu-
lating a total score for classifying an individual as high or low risk etc. Classification
methods are also used lately in health fields such as cardiovascular and cancer risk
prediction by using data mining techniques Varlamis et al. (2017); Weng et al.| (2016]).
Both tools aim to evaluate, classify and predict health conditions aiming to assist
medical community to understand and interpret the mechanisms of various diseases.

In this work, classification methods and composite indices are compared in order to
construct a methodological framework, which could assist any researcher aiming to
conduct a classification procedure in medical data. The simulations’ results by var-
ious scenarios performed in this work, showed differences in evaluation criteria for
classification methods and indices used. More specifically, Naive Bayes (NB) classifier
achieved the greatest value in accuracy, whereas the greatest value of the area under
the receiver characteristic curve (AUC) and true positive ratio was achieved by the
weighted indices. This shows an efficient performance of weighted indices in classifi-
cation problems, when applied on data with similar characteristics as the simulated
data of our study (equal value distribution and scale for all features, zero correlation
between features, and imbalance between the two classes. The greatest value of true
negative ratio was achieved by logistic regression and neural networks, therefore these
methods could be conducted in special populations where high specificity is needed.
The greatest value of positive predictive value was achieved by logistic regression and
support vector machine. In contrary, the greatest value of negative predictive value
was achieved by the weighted indices.

The simulations results revealed a significant increase in AUC and sensitivity of clas-
sification methods and weighted indices when the number of partitions increase above
7. For small values of k (k < 7), weighted indices seems to outperform classification
methods, whereas for great values of k (k > 7) classification methods like SVM achieve
greater scores in criteria AUC and sensitivity. This shows that classification methods
can better handle features with many discrete values, which resemble to continuous
features. Even among the classification methods, there exist many differences. For ex-
ample, decision trees and logistic regression perform worse than Gradient Boosting
Ensemble classifier, SVMs or Naive Bayes.

In addition, increase of the features’ multitude led to the AUC increase except the
method of decision trees in which the increase in the components seems to confuse the
discretion of this method, which is noted in the literature ((Zeki¢-Susac et al., 2014)).
The results of our study in low and high dimensional spaces are in agreement with
the related literature: i) we observe that for a small number of features, the weighted
indices perform better than the classification methods, whereas when the number of
features significantly increases, support vector machines (SVM) and Naive Bayes (NB)
performed better (Bolivar-Cime and Marron, [2013), and ii) in all cases the increase
rate is smaller for a larger number of features (Bersimis et al., [2017b).

Increasing the size of the population leads to an increase in the values achieved by
many classification methods in the AUC and sensitivity evaluation criteria and, at the
same time, to a reduction in the values achieved by the weighted indices in the same
criteria. The highest increase rate is recorded by logistic regression, while weighted
indices achieve higher values than classification methods, at any sample size. Therefore,
the increase in the size of the population seems to have a more pronounced impact on
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some classification methods.

A lower ratio of patients to healthy individuals results in a drop in performance for all
methods. Thus, for highly unbalanced sets the classifiers performance is worst, i.e. the
rarer a disease is, the more difficult it is to detect it. Indices show greater diagnostic
ability in cases of very rare diseases, such as 1:95, and they also showed an increase in
1:4 case, in contrast to other methods.

When the distance between the theoretical population means of health and diseased
individuals is relatively small, i.e. small A values, then the diagnostic ability of the
weighted indices is low, but higher than the one of the classification methods, measured
by AUC and sensitivity criteria. When the separation between diseased and non-
diseased becomes easier, i.e. higher A values, the classification methods outperform
weighted indices.

The better performance of composite indices in some of the setups in the artificial
(synthetic) data is validated with the real data of ATTICA study. For example the
composite indices have a larger AUC area and sensitivity than classification methods.
However, the overall accuracy of classification methods is higher, and this is mainly
because classification methods tend to produce more negatives (i.e. their Negative
Predictive Value is close to 1).

The combination of a variety of medical (clinical, biological or behavioral) features,
measured on a discrete scale, for classifying individuals of a general population as
diseased or not, is an important process for establishing effective prevention strategies
in various health areas, such as cardiovascular and cancer risk, metabolic disorders,
malnutrition, risk of infant mortality, etc.

Conclusively, this work propose methods for the selection of an effective diagnostic
method by using suitable classification methods or weighted indices in relation to the
health data nature such as derived from psychological diseases or nutritional adequacy,
etc. (McCullough et al. [2000). Moreover, the use of classification methods or weighted
indices should be suggested for diagnostic procedures due to the fact that sensitivity
and/or specificity increase in many cases shown as it is shown in previous paragraphs.
In addition, further research is needed in this area because the classification method’s
accuracy and weighted indices’ diagnostic ability have not been adequately studied.

7. Conclusions

Composite indices derived from multivariate methods seem to be sufficient solutions
for classifying individuals in the case of discrete features with small partition number,
since they perform better than classification algorithms. However, the latter are better
for higher numbers of partitions k. Classification methods such as SVMs are preferable
for high dimensional spaces i.e. for datasets with a big number of features/variables. In
addition, in the case of orthogonal feature spaces, i.e. non-correlated variables, Naive
Bayes classifier is a fast alternative that outperforms all other methods. In the case
of available large training datasets, logistic regression is a well performing and fast
alternative that competes other methods in evaluation criteria. For highly imbalanced
datasets it is preferable to use multivariate indices than simple regressions methods
or SVMs. Ensemble methods are also a good solution, since they combine multiple
classifiers. Finally, for high X values, i.e. easy separable problems, SVMs and ensemble
methods perform better than multivariate indices.

The next steps of our work in this field are to experiment with more real datasets,
especially datasets that are inherently discrete. Also we plan to extend our synthetic
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dataset generator to allow for different scales for each feature, different distributions
and combinations of discrete and continuous features. Thus we will better simulate
real datasets and will allow researchers to experiment with synthetic data of any
size that resemble their real data. Finally, we will add more classification methods
and optimization strategies, e.g. feature selection and parameter tuning in order to
compile a powerful experimentation platform.
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