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Abstract. The power of n-gram models in capturing syntactic patterns
using large text corpora made them the tool of choice for language model-
ing in machine translation, speech recognition, summarization and other
tasks. N-grams have been frequently used for developing features for su-
pervised classifiers and improved the performance of unigram features
and recently n-gram graphs managed to capture significant language
characteristics that go beyond mere vocabulary and grammar and have
been established as a prominent representation for text classification.
This work proposes a distributed implementation of the n-gram graph
framework on Apache Spark, named ARGOT. The main operations of
the n-gram graph framework (graph similarity, graph merging and up-
date) have been redesigned in order to execute efficiently in the dis-
tributed environment. The implementation performance is evaluated on
a demanding text classification task where the n-gram graphs are used
for extracting features for a supervised classifier. The experimental re-
sults show the scalability of the proposed implementation to large text
corpora and its ability to take advantage of a varying number of pro-
cessing cores. Although the emphasis is on the scalability of algorithms,
the classification algorithm also achieves state-of-the-art accuracy per-
formance on a well-established multilingual dataset, which adds to the
efficiency of the proposed approach.
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1 Introduction

Text classification is a supervised machine learning technique for identifying
predefined categories that are related to a specific document. Typically, a clas-
sification model is trained over a set of labeled documents and then predicts the
label of previously unseen, unlabeled documents. Text classification is a popular
research topic with many applications ranging from simple tasks such as spam
filtering [2] to more complex tasks such as the analysis of social media content [1].
The continuous growth in the amount of text generated in social media imposes



the need for scalable techniques that take advantage of the available comput-
ing power to the maximum. Several distributed processing paradigms have been
implemented to tackle exactly this need [6], [7], [8], [9], allowing parallel and
distributed solutions for text mining tasks.

Parallel processing refers to the method where a large task is divided into
smaller tasks, which are computed simultaneously in order to decrease the total
execution time. From the dawn of multi-core machines, applications were de-
veloped to use each core and take advantage of as much computation power as
available on a single, multi-core machine. However, with the constant increase
of large scale data, monolithic solutions reach their limits and architectures that
span many machines are the only solution. Distributed computing applications
employ in tandem the processing cores of several machines in the same network
or cluster thus allowing an – apparently infinite – upscale to related solutions.

The n-gram graph framework (nGG framework [4], [5]) is supported by a
toolkit3 for the creation and processing of n-gram graphs. It has been success-
fully employed in several NLP tasks ranging from summarization [22] to text
classification [3] and indexing with excellent results. The application of the nGG
framework in large corpora clearly sets the need for scalability.

This article proposes a newly developed framework, called ARGOT, which
provides a distributed implementation of n-gram graph algorithms. The imple-
mentation is tested on a text classification task and handles the time consuming
processes of feature extraction and graph merging in order to improve the overall
scalability in large corpora. The ARGOT framework improves the scalability of
the nGG framework, while retaining its state-of-the-art performance. The ex-
perimental evaluation studies the scalability of the solution and the effect of the
dataset and features set size to the time performance of the implementation.

Section 2 that follows summarizes related work, whereas Section 3 explains
the nGG Framework. Section 4 provides the implementation details of ARGOT
and Section 5 the results of our experimental evaluation. Finally, Section 6 con-
cludes this work and summarizes the next steps.

2 Related Work

Human-generated content grows by massive amounts every day. Thus, new ar-
chitectures and tools are needed to process this data volume efficiently by us-
ing every available processing resource. Apache Hadoop4 is a platform for dis-
tributed storage and distributed processing of very large datasets on computer
clusters built from commodity hardware. Apache Hadoop uses MapReduce tasks
to process the high volume of data. MapReduce is the programming paradigm
that allows for massive scalability across hundreds or thousands of servers in a
Hadoop cluster. Apache Spark 5 is another cluster-computing framework used
for in memory large-scale data processing.

3 https://github.com/ggianna/JInsect
4 http://hadoop.apache.org/
5 http://spark.apache.org
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Several techniques have been proposed in the literature for distributed text
classification in Big Data applications which employ the aforementioned frame-
works [15], [16], [17], [12]. An implementation of Naive Bayes text classification
in a MapReduce model is presented in [14]. To adequately manage big data in
associative classifiers (because of time complexity and memory constraints) a
map reduce solution has been presented in [13]. In [10] the efficiency of Support
Vector Machine and Naive Bayes classifiers is tested using a simple Word2V ec
model and algorithm on Apache Spark. In [11], again Apache Spark was used
for common text classification and text mining techniques.

Apart from the distributed approach, graph-based techniques have been de-
veloped over the years for accurate text classification [20], [21]. Authors in [18]
have employed an n-gram graph framework, which employs the neighboring n-
grams as features for a text classifier. A graph-based approach has been intro-
duced in [19] for encoding the relationships between the different terms in the
text. In our work, we evaluate the n-gram graph framework in a text classification
task, using the proposed distributed implementation.

The primary aim of this work is to provide a parallel and distributed imple-
mentation that boosts the scalability of the original nGG framework. Thus, the
focus is not on the classification task itself, but on the properties that affect the
scalability of the classification solution. These properties drive the redesign of
existing operators (graph creation, graph merging, graph similarity calculation,
etc.) in the distributed setup.

3 The N-gram Graph Framework

Before getting into the details of the proposed distributed processing implemen-
tation, it is recommended to elaborate on n-grams, the n-gram graph represen-
tation and the algorithms that make this representation applicable to a text
classification task. Character or word n-gram graphs are used for representing
texts. They use a sliding window that moves one character at a time as follows:
Input text: Hello World!
Output n-grams: Hel,ell,llo,lo ,o W, Wo,Wor,orl,rld,ld!
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Fig. 1: The N-Gram Graph Representation of the “Hello World!” string.
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The output n-grams are the graph vertices and are unique (e.g. if the trigram
“Hel” is found multiple times in the text only one vertex is added to the graph).
The edges of the n-gram graph connect consecutive n-grams (i.e. n-grams found
within the same sliding window). For example, for a window of size 3, each
trigram is connected to the next 3 trigrams to create unique undirected edges:
“Hel-ell”,“Hel-llo”,“Hel-lo ”, “ell-llo”, “ell-lo ”, “ell-o W” etc.

Each edge has a weight, which corresponds to the number of its occurrences
in the text. So, a weight of 2, for the edge “Hel-ell” means that “Hel” is close
to trigram “ell” (within the sliding window) twice. The respective graph for the
“Hello World!” input text is shown in Figure 1.

3.1 Similarity Operators

A number of operators (e.g. merging, difference, similarity [4]) can be applied
to single or pairs of n-gram graphs.Concerning similarity, ARGOT implements
four different similarity operators for graph comparison.If |Gi| is the size of the
graph Gi (i.e. number of edges) then Size Similarity, compares graphs’ sizes and
is given by Equation 1.Containment Similarity expresses the proportion of edges
e that graphs G1 and G2 share in common and is given by Equation 2. Value
Similarity considers the weights of the common edges and the relative size of
the compared graphs. For an edge e ∈ G1 ∩ G2, the respective weights of e in
graphs G1 and G2 are w1e and w2e and Value Similarity is given by Equation 3,
where V R is the edge value ratio given by Equation 4. Finally, Normalized Value
Similarity NV S, given by Equation 5, ignores the relative sizes of the compared
graphs and focuses on the weights of common edges.

SS(G1, G2) =
min(|G1|, |G2|)
max(|G1|, |G2|)

(1)

CS(G1, G2) =

∑
e∈G1∩G2

1

min(|G1|, |G2|)
(2)

V S(G1, G2) =

∑
e∈G1∩G2

V R(e)

max(|G1|, |G2|)
(3)

V R(e) =
min(w1e, w2e)

max(w1e, w2e)
(4)

NV S(G1, G2) =
V S(G1, G2)

SS(G1, G2)
(5)

3.2 Graph Operators

Four additional binary operators are defined for the text classification task: i)
union (or merge), ii) intersection, iii) inverse intersection and iv) minus or delta
(all-not-in). The Union operator creates a new graph GU , which contains all
the edges of the two input graphs (i.e. G1, G2). The edge weights on GU are
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calculated using Equation 6, where L (0 ≤ L ≤ 1) is a balancing factor for edges
that appear in both graphs.

weU =


we1 if e ∈ G1 and e 6∈ G2

we2 if e 6∈ G1 and e ∈ G2

L · we1 + (1− L) · we2 if e ∈ G1 ∩G2

(6)

The Union operator can be defined for merging multiple graphs at a time. In
this case, the merged graph has the union of all edges and new edge weights,for
edges occurring in n documents, are given by Equation 7.

weU =

∑n
i=1 wei

n
(7)

The binary intersect operator creates a new graph GI which contains only
the common edges of the input graphs. Equation 6 is used for calculating the
new edge weights. The inverse intersect operator creates a graph GII containing
the non-common edges of G1, G2. Finally, the minus (all-not-in) operator creates
a graph GM that contains the edges of G1 that do not appear in G2.

3.3 The Use of N-gram Graphs in Text Classification

The first step of the classification process is to train the classifier with the train-
ing instances. In the case of n-gram graphs (see Figure 2), separate class graphs
are composed by merging –using the union operator– the training instances (n-
gram graph representations of documents) of each class. In the classification step,
each unlabeled instance (i.e. document) is first represented as n-gram graph. It is
then compared with all the class graphs and the respective similarities (CS, V S
and NV S) form the feature vector representation of the instance. As a result, in
an N -class classification problem, each instance maps to a 3×N feature vector.

abcdef

Text Document

abc

bcd

cde

def

Document Graph

Similarity 
Calculation

Topic 1 Graph

Topic 2 Graph

Topic N Graph(0.2,0.8,1.0, ,0.4,0.2,0.5, ,0.3,0.5,0.6, )

VS CS NVS

Fig. 2: Extracting the feature vector using the n-gram graph framework.
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4 Distributed Implementation

Despite its performance [3], the n-gram graph classification requires a significant
amount of time for training (i.e. for constructing the class graphs) and for creat-
ing the feature vectors (i.e. computing graph similarities). The time complexity
of these processes depends both on the number of classes and the amount and
size of training documents and sets a scalability challenge.

In order to address this challenge, we propose a distributed implementation
of the classification algorithm that uses Apache Spark, a mature, fast and general
engine for large-scale data processing. In this section, the distributed algorithms
for the construction of the class graphs and the computation of graph similarities
are explained. The code of these implementations and the framework developed,
which is called ARGOT, is publicly available and can be found on a public
repository6.

Distributed class graph creation As illustrated in Figure 3, the process
begins with the transformation of the training text documents to the respec-
tive n-gram graphs (nGGs). The documents, which can be located in a Hadoop
(HDFS), Network (NFS) or any other distributed file system, are split into k
partitions and each partition is processed independently. Each edge of the nGG
consists of the connected vertex identifiers (ids) and the edge weight. The vertex
ids of each edge are used as key and the edges are repartitioned based on the
hash of this key. As a result, edges from different documents that correspond
to the same vertex pairs are located in the same partition, thus allowing fast
merging of the graphs and calculation of the new edge weights. As a result, the
edges of an nGG are distributed across the processing nodes and after merging
the training instances of the same class, we have a “distributed” class graph.

Distributed graph similarity computation The second step, as illustrated
in Figure 4, is the extraction of similarity features, which is based on the com-
putation of graph similarities between the class graphs and each unclassified
document. The class graph can be huge (i.e., millions of edges) and so can be
the time needed to compare each unclassified instance with the class graphs. To
solve this problem, a graph similarity algorithm, similar to the semi-join tech-
nique used in distributed databases, has been implemented. At each comparison,
the smaller document graph is broadcasted to every partition or cluster node,
and the the partial overlap with the portion of the class graph in each node is
computed. This implementation increases the algorithm’s performance, since it
reduces the communication overhead between nodes. Since the similarity mea-
sures are based on the overlapping edges only, we filter the partitions and take
the edges that exist in both graphs. The resulting set of edges is too small (i.e.,
the number of the common edges per partition is equal or less than the number
of edges of the small graph) and is collected back to the master node. The master
node can then compute the similarities really fast.

6 https://github.com/ioannis-kon/ARGOT
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Fig. 3: The merging of multiple documents into one class-representative graph
using two partitions.

5 Experimental Evaluation

The distributed implementation of the document classification algorithm was
evaluated for its performance and scalability on a large-scale, real-world dataset,
using two different hardware infrastructures. The experiments aim to study how
several parameters (e.g. the total number of documents or classes) affect the
algorithm performance.

The processing steps of the classification task, as described in [3], were re-
peated: i) on a single node with 24 cores (Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50GHz) and 96 GB of RAM, running Debian 64-bit with Linux Kernel 3.16.0-
4-amd64 and Java OpenJDK 1.8 and ii) on a cluster comprising 6 commodity
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Fig. 4: Similarity computation between a small and a distributed graph.
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machines, each with 4 cores (Intel(R) Core(TM) i5-3330S CPU @ 2.70GHz) and
8 GB of RAM, totaling in 24 cores and 48 GB of RAM, running OS X 10.10
(14A389) with Kernel Darwin 14.0.0 and Java OpenJDK 1.8, connected with
100-Mbit ethernet links. For the implementation of ARGOT, Scala 2.11.7 and
Apache Spark 2.0.1 were used.

5.1 Dataset

The Reuters RCV2 corpus7 is a collection of more than 480, 000 news articles,
categorized along a class hierarchy of 104 overlapping topics, written in 13 dif-
ferent languages and is very popular in text classification tasks [24], [25], [26]. In
the experiments we used a subset of the Reuters corpus (only the top four, non
overlapping, categories), comprising articles in four languages (see Table 1).

Table 1: Dataset statistics.
Characteristic Value Characteristic Value

Classes 4 # of edges of class graph 1 5, 772, 038
Documents 172, 115 # of edges of class graph 2 10, 134, 473

Total Characters (×108) 2.07 # of edges of class graph 3 3, 708, 371
Characters/Document 1, 205.55 # of edges of class graph 4 8, 251, 410
Total Tokens (×108) 30.92 Total # of training instances 154, 905
Tokens/Document 179.66 Total # of test instances 17, 210
Av. Token Length 5.68 Total # of graph comparisons 688, 460

Total size of dataset 201.69MB
Average size of each instance 1.2KB

5.2 Classification performance

In order to evaluate the performance of ARGOT implementations, we run a full
classification experiment as described in [3]. More specifically, we performed a
90%-10% training-test split of the dataset. The (four) class graphs are created by
merging a randomly selected subset (90%) of the training documents. The doc-
ument graphs of all documents in the training (and test) set are compared with
all the class graphs using three similarity measures, thus creating a set of train-
ing (and test) instances each one comprising 12 features (3×4). Then, a Naive
Bayes classifier is trained using the training instances and evaluated on the test
instances The classification precision was 95.1% whereas the maximum preci-
sion reported in [23] was 94% in only a subset of the same data set, which shows
that the n-gram graph approach, is language-independent and performs well in
the classification task. However, this work focuses on the time performance and
scalability of the distributed algorithms as discussed in the following.

5.3 Time performance evaluation

In order to test the scalability of the implemented algorithms, we conducted
experiments on the complete dataset described in Section 5.1 and Table 1.

7 http://trec.nist.gov/data/reuters/reuters.html
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Number of partitions: ARGOT scalability was tested using an increasing
number of partitions (from 8 to 48) on a single node machine and on a cluster
of commodity machines. We repeat the experiments 10 times and report the
average times. Figure 5a shows the average merging time per class, where the
distributed merging function scales better for bigger classes (i.e., class 2). Figure
5b shows the average time for extracting features from the instances. It shows
great scalability capacity since the algorithm reduced the extraction time by
almost 50% from 8 to 48 partitions. The performance improvement is more
obvious in Figure 5c, which shows the average time for extracting similarities
per instance, which was reduced from 1.04 seconds to 0.58 seconds (i.e. 43%
improvement), from 8 to 48 partitions.
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Fig. 5: ARGOT performance in a large-scale text classification task (single node).

Using the same dataset and partitions setup, we repeated the experiment on
a distributed cluster8, in order to test how data broadcasting and repartitioning
affect performance. Figures 6a, 6b and 6c show the average merging time, the
feature extraction time and the comparison time per instance, correspondingly.
We can see that the performance drops when increasing the number of partitions
(from 16 to 48) since the communication overhead is higher than the benefit from
distributed processing. In larger class graphs and datasets the system is expected
to perform better with more partitions. Finally, it is worth mentioning that in
the single node experiment the peak memory usage was 41 GB, whereas on the
cluster experiment was roughly 3 GB per machine.
Dataset size and number of classes: The second set of experiments examines
how the implementation performs with an increasing total number of instances
and the number of classes increases. Two subsets of the large dataset have been
created, each comprising 10, 000 documents in total, from two and four classes
respectively (see Table 2 for details). Figure 7a shows the number of instances
per topic. Figures 7b and 7c show the number of instances per topic for the first
and the second subset.

We run the same experiment with the same classification settings as before,
but this time we used 2 to 24 partitions (2,4,8,12,16,24) and since these are only
subsets we run them on the single node setup. Again, we repeated the experiment
10 times for each setting and took the average times.

8 Cluster nodes are connected with 100-Mbit Ethernet links.
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Fig. 6: ARGOT performance in a large-scale text classification task (cluster
mode).
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Fig. 7: Number of instances per topic.
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Table 2: Statistics of the two subsets.
Characteristic Subset 1 Subset 2

Total # of training instances 9, 000 9, 000
Total # of testing instances 1, 000 1, 000

Total # of graph comparisons 20, 000 40, 000
Average size of each instance 1.028KB 1.157KB
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Fig. 9: Avg feature extraction time and avg comparison time per experiment.

Figures 8a and 8b show the average merging time per class per experiment.
From these two figures we can conclude that the merging time of the graphs
depends on the number of the documents in a topic. Figure 9a depicts the average
feature extraction time per experiment. While having less documents per topic
and the same number of total training instances the extraction time took longer.
The difference is the number of graph comparisons, which are greater in the
last case. From this we can infer that the feature extraction time depends on
the number of topics. Finally, Figure 9b shows the average comparison time
per instance. From the experiments conducted we can safely say that the more
documents we have per class and the larger graphs we have, the scalability of
the algorithms is great.

5.4 Time performance evaluation of multi-threaded implementation

To better evaluate ARGOT, we compared our newly developed framework with
the current implementation of n-gram graph algorithms, JInsect. JInsect is not
scalable to many machines but it can use all available processing threads of a
computer (multi-threaded execution). First, we run JInsect using the two afore-
mentioned subsets in the virtual machine. Figures 10a and 10b show the average
merging time of graphs in the first subset and in the second subset, correspond-
ingly. Figure 10c shows the average feature extraction time in both subsets for
both (distributed and multi-threaded) implementations. We can see that AR-
GOT is faster in graph merging but slower in feature extraction. To further
evaluate ARGOT against the current implementation, we run JInsect using the
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large dataset. This time JInsect utilized the entire memory of the virtual ma-
chine, plus swap memory and did not manage to finish the experiment. From
these experimental results we can infer that ARGOT can not only scale to mul-
tiple machines, but it can also handle larger data sets in contrast to the multi-
threaded, single machine implementation.
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Fig. 10: JInsect (i.e. multi-threaded, single-machine) performance evaluation.

Based on the above, we can safely conclude that ARGOT is a prerequisite
to apply n-gram graphs to a large scale setting, overcoming single-machine limi-
tations. Finally, we should note that ARGOT yields the same results as JInsect
in terms of classification performance.

6 Conclusions

In this work we presented ARGOT, a distributed implementation of the n-gram
graph algorithms in text classification. We illustrated the details of the dis-
tributed implementation and demonstrated the scalability of ARGOT on a real-
world, large-scale, multilingual dataset. We showed how the number of topics and
the number of instances can affect the performance of the algorithms. We also
presented the effect the broadcasting of data can have on the execution time of
the experiment, when using a cluster of computers. We showed that if the num-
ber of instances per topic is large, thus the corresponding class graphs are huge,
ARGOT can benefit from the larger number of CPUs in a cluster/machine. We
also compared ARGOT to the established implementation of n-gram graphs and
showed that ARGOT scales better when using big data in contrast to JInsect
which did not manage to finish the experiment using the large data set. As a
side-effect we demonstrated state-of-the-art performance on an established clas-
sification dataset for a single-label, multi-class and multilingual setting, though
this is not the purpose of this paper.
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