
A package recommendation framework
based on collaborative filtering

and preference score maximization

Panagiotis Kouris1 2, Iraklis Varlamis2, and Georgios Alexandridis1

1 School of Electrical and Computer Engineering, National Technical University of
Athens, Greece

{pkouris,gealexandri}@islab.ntua.gr
2 Department of Informatics and Telematics, Harokopio University of Athens, Greece

varlamis@hua.gr

Abstract. The popularity of recommendation systems has made them
a substantial component of many applications and projects. This work
proposes a framework for package recommendations that try to meet
users’ preferences as much as possible through the satisfaction of several
criteria. This is achieved by modeling the relation between the items
and the categories these items belong to aiming to recommend to each
user the top-k packages which cover her preferred categories and the
restriction of a maximum package cost. Our contribution includes an
optimal and a greedy solution. The novelty of the optimal solution is
that it combines the collaborative filtering predictions with a graph based
model to produce recommendations. The problem is expressed through a
minimum cost flow network and is solved by integer linear programming.
The greedy solution performs with a low computational complexity and
provides recommendations which are close to the optimal solution. We
have evaluated and compared our framework with a baseline method
by using two popular recommendation datasets and we have obtained
promising results on a set of widely accepted evaluation metrics.

Keywords: Recommendation system; Package recommendations; top-k
packages; Collaborative filtering

1 Introduction

Recommendation systems (RSs) have become popular since they can personalize
user experience by providing automated recommendations. RSs operate by an-
alyzing user preference data, trying to identify correlations between them. User
preference is expressed in various forms such as the history of purchases, usage
logs and numerical ratings in a predefined scale (e.g. five star rating system).
The RSs, in return, may propose a variety of items; for example, an on-line shop
could suggest books or movies to users based on their profile, their previous
purchases, the preferences of his friends and other users with similar interests.

Package Recommender Systems extend the classical RSs by proposing to their
users sets of items (packages) instead of single items. Package recommendation

is extremely useful in a number of application domains (e.g. recommendation of
packages of academic courses to students, packages of meals for a weekly diet,
travel packages and sets of movies or books). This work focuses precisely on
package recommender systems that are a specific category of RSs.

This work presents a recommendation framework which can be applied on
systems that group items into categories and make package recommendations
to users under various constraints (e.g. time, money). The proposed framework
composes packages by selecting from a pool of items that may belong to multiple
categories, using as input only the users previous preference data (ratings of
the items), the package size and a package cost threshold. The recommended
packages comprise of items that match user preferences and satisfy the package
cost restriction, as well as the package composition criteria that concern the
categories of the selected items. The recommended packages are expected to
achieve the highest preference score of the user to whom they are proposed
to, while satisfying all user restrictions. Some examples are movie packages (a
number of movies of different categories with a maximum total duration), weekly
diets (a number of meals per day comprising of plates of a nutritional value and
predefined calories) etc.

An optimal and a greedy solution, which are based on the user preferences
and given restrictions in order to recommend the top-k packages, are proposed.
The prediction of a user’s preference score for an item is performed using the
technique of item-based collaborative filtering [1]. The optimal solution matches
items to categories so as to obtain the top-k packages of items with maximum
preference score and at the same time it satisfies the constraint of maximum
package cost. This optimal approach tries to solve the problem of recommenda-
tions by modeling it as a minimum cost flow problem that is solved by integer
linear programming. On the other hand, the greedy solution performs in low
running time due to low computation complexity and its recommendations are
close to those of optimal solution. The proposed solutions were evaluated by
estimating a set of measures and compared with a baseline approach, which is
based on the popularity of items, without taking into account the current user
preferences. For evaluation purposes, we have used two popular datasets and we
have confirmed the robustness of the solution.

2 Related Work

Package recommendation has attracted the attention of the scientific community
in recent years. In [2], the authors propose a system for recommending a team of
experts, who have a set of predefined skills and a minimum communication cost.
These experts are connected and communicate with each other within a social
network. Their approach bears a similarity to our methodology as the skills may
correspond to the categories of our work.

Other systems try to satisfy hard constraints among proposed packages of
fixed size [3, 4]. The packages can be the top-k tuples of entities that match
user queries [3], or the result of rank join queries that formulate user aggrega-

tion constraints [4]. When a maximum cost (budget) restriction is added [5–7],
the algorithms create packages that maximize user preference score satisfying
the given constraints. In [8, 9], authors introduce restrictions on prerequisite
items of package recommendations. These restrictions are valid in certain ap-
plication domains, e.g. in academic course recommendation, where an advanced
course is offered only if other elementary courses have been completed success-
fully. Another course recommendation system that is based on the maximum
flow algorithm is presented in [10]. Our proposed methodology differs from the
aforementioned systems as it identifies the minimum cost flow, it includes the
restriction of maximum package cost and it is more generic; it can be adapted
and applied to a wide range of recommendation domains.

Flexible recommender systems, a special case of package recommender sys-
tems, do not obey hard constraints and can adapt to the application domain. In
[11] authors introduced an intuitive user interface for travel package recommen-
dation and in [12], they proposed a top-k package recommender that performs
user preference elicitation. Our system is different since it is capable of directly
producing recommendations based on past user evaluations, without requiring
any additional user interaction. In [13], a versatile recommendation system for
proposing packages of items has been developed. This system is flexible and does
not refer to any particular application, but it is adapted to the requirements of
each user. It is a content-based recommender system [14] that proposes packages
adhering to user-provided constraints. A main difference of this system from our
work is that it is based on content while we use collaborative filtering predictions.

Our model and system differentiates the other approaches in the field, since
the compatibility constraints apply to the categories in which the items belong.
The fact that an item may belong to more than one categories (i.e. item may fit
to different packages with different roles), formulates a new package composition
problem, which has not yet been discussed in the literature.

3 Package Recommendation

3.1 Problem Definition

The proposed recommender system assumes that a user u from a set of users U is
interested in packages of fixed size, composed of items ti from a set T . All items
in T are considered to be of the same type (e.g. movies, plates or food portions,
POIs) but may belong to one or more categories from a set C of l categories.
Each user has provided ratings for several items of T and we can use these ratings
to understand the user preferences, for both the specific items and the categories
these items belong to. The rating information can be typically represented with
a rating matrix R of size n × m, where n is the total number of users and m
is the total number of items. This matrix is usually sparse, since users typically
rate only a few items, but by using a collaborative filtering algorithm, ratings for
items that users have not rated yet are possible to be predicted [15]. Each item
ti has an associated cost icost (e.g. the movie duration, the distance to reach a
POI or the money which is spent there or a combination of the two). Also each

item has an item value ivalue, which can be the item rating (actual or predicted).
As a result, each package is a fixed-size set of s items that has a total cost pcost
(the sum of the costs of the items that each package contains) and a total value
pvalue (the sum of the selected item values).

The input parameters are the package size s, a maximum package cost
maxpcost, optionally the number of alternative packages k and the user pref-
erences which are represented by the number of categories per package or specif-
ically by the number of items from each category (ncj). The system recommends
the package (or the top − k packages in non increasing pvalue order) that cov-
ers user preferences, not surpassing maxpcost and maximizing the total package
value pvalue. Table 1 summarizes the notations used in the proposed model.

Table 1: Notation summary
Symbol Description

U The set of all users, U = {u1, ..., un}, |U | = n
T The set of items, T = {t1, ..., tm}, |T | = m
C The set of categories C = {c1, ..., cl}, |C| = l
R The user-item rating matrix (dimension n×m)

icost The cost of having item ti in the package
ivalue The value that item ti adds to the package
p A recommended package with items p = {t1, ..., ts}

pcost The total package cost
pvalue The total package value

s The package size (number of items in the package)
maxpcost The maximum allowed package cost

k The maximum number of recommended packages
ncj The number of items of category cj in the package.

A package p is a set of s items {t1, ..., ts}, where each item ti belongs to one
or more categories from C, but within the package each item represents a specific
category cj . The package can be recommended when it satisfies the compatibility
and aggregation constraints of Equation 1, where |tcj | is the number of items
that represent the category cj .

|tcj | = ncj , ∀cj ∈ {c1, ..., cl}

pcost ≤ maxpcost, where pcost =
∑
ti∈p

icost

|p| = s

(1)

The total package value is given by Equation 2 and the recommender system
proposes the top− k packages in non increasing pvalue order.

pvalue =
∑
ti∈p

ivalue (2)

Package compatibility constraints: The main package composition con-
straint according to Equation 1 refers to the number of items per category in
the package (ncj : cj ∈ {c1, .., cl}). These numbers can be given as input by the

user or they may be derived implicitly from past user preferences. In this case,
the popularity of each category is determined first, followed by the distribution
of items among the q most popular categories. The popularity of a category cj
may depend on the number of items of this category that the user had rated
in the past, the sum of the ratings the user has provided for the items in this
category or any other method derived from the actually rated items. Once the
category popularity for each user has been computed, then the top-q categories
can be selected for composing the package, where q may be provided by the user
explicitly. Based on the popularity scores for the top-q categories, we can derive
the number of items for each category in the package, which may be proportional
to the category popularity, or the same for all popular categories.
Package aggregation constraint: This constraint refers to the total package
cost pcost, which must not exceed a maximum threshold value maxpcost.
Item value: The value of an item ivalue can be the rating explicitly provided
by the user for this item, or implicitly predicted by the system, e.g. using a
collaborative filtering algorithm. An alternative method for defining the value of
an item i, that combines the specific user value ru,i with the item popularity is
given by the following equation:

ivalue = ru,i + PF · ni

n
(3)

where PF ∈ {0, 1, 2, ..., 10} is a popularity factor, ni is the number of users that
have rated item ti and n is the total number of users.

4 Solving the package composition problem

4.1 Minimum cost flow model

The problem of finding a package of items that satisfies the restrictions of Equa-
tion 1 and at the same time maximizes the package value of Equation 2 is an
optimization problem which may add a big computational load to a recommen-
dation system. A good algorithm that finds the optimum solution for each user
is the key to the efficiency and effectiveness of the recommender system. The
key concept is that each category may be optimally matched to a number of
items according to the parameters of the problem. Essentially, this is a problem
of optimal matching, which can be reduced to a minimum cost flow problem [16].

Since the proposed model aims at maximizing the package value for a prede-
fined package size s, the total flow must be equal to the package size and the edge
cost must be inverse to the item value in order for a minimum cost flow model to
be used. The basis of the flow network is the bipartite graph G(T,C,E), where
T and C are the sets of item and category vertices respectively and E is the set
of edges. An edge eij connects item ti with category cj and denotes that the
item belongs to the category. The bipartite graph is extended, for each user, to
a flow graph (Figure 1), by connecting the source vertex Src to all item vertices
that the user has not yet valued as well as all the category vertices that are
in the interest of the user to the termination vertex Trm. The edges carry the

information fci,j/maxcapij/mincapij , where fci,j is the flow cost over the edge
eij , maxcapij and mincapij are the maximum and minimum edge capacity.

Trm

c1

0/1/1

c2
0/1/1

c3

0/1/1

t1

0.25/1/0

0.25/1/0

t2

0.2/1/0

t3

0.25/1/0

t4

0.5/1/0

0.5/1/0

t5

0.2/1/0

Src

0/1/0

0/1/0

0/1/0

0/1/0

0/1/0

0/3/3

Fig. 1: An example of the minimum cost flow problem formulation

The maximum flow from Src to Trm may be reduced to the optimal match-
ing between items and categories which, in turn, may lead to the creation of
the optimal recommendation package. The derivation of this optimal matching
between items and categories from the maximal flow problem is due to the va-
lidity of the integrality theorem [16] which claims that if all the capacities of the
edges of a flow graph have integer values, then the maximum flow also assumes
an integer value. Therefore, it is this theorem that allows the optimal matching
between an integer number of items and categories. Adding a cost for passing
the flow through a graph edge transforms the problem to a minimum cost flow
one, and its solution results in the recommendation of the top package that
maximizes the item value.

The cost for passing the flow through an edge that is connected to the source
Src or terminal Trm vertices is zero (fcSrc,i = fcj,Trm = 0, ∀i ∈ T, ∀j ∈ C).
The flow cost fci,j through the edge eij that connects item ti with category cj
is the inverse of the (predicted) item value (ivalue) and it is the same for all the
edges that connect ti with a category vertex (see Equation 4).

fci,j =
1

ivalue
,∀i ∈ T, ∀j ∈ C (4)

The maximum capacity of an edge connecting Src with an item vertex is
equal to the maximum number of times the same item can be accessed (e.g.
in the movie package this is always 1), while the minimum capacity is 0. The
maximum capacity of edges connecting items to categories is always 1 since an
item may belong to the same category only once (the minimum is 0). Finally, the

maximum capacity of edges connecting category vertices and the Trm vertex is
the number of items per category in the package (the minimum is 0). Figure 1
shows an example of a minimum-cost flow graph for finding the best package
of size s = 3 with exactly 1 item from each of the categories c1, c2 and c3. The
predicted user ratings for items {t1, t2, t3, t4, t5} are {4, 5, 4, 2, 5} respectively in
the 0-5 scale. The optimal package for this problem includes items t1, t2, t5, which
minimize the cost of the flow with the minimum cost of 0.65 (i.e. 0.25+0.2+0.2).
The respective package value pvalue = 14 is the maximum possible.
Integer linear programming formulation: In the general case, the problem
of discovering the minimum cost flow of the graph may be re-formulated in terms
of linear programming [17]. In addition, the proposed model has an aggregation
constraint; the maximum package cost threshold (maxpcost), which relates to
budget or time restrictions that apply to the recommended package as a whole.
The linear programming objective function and the constraints are depicted in
Equation 5, where V = {T,C, Src, Trc} is the set of min-cost flow graph nodes,
fij is the flow passing from an edge eij and icost is the cost of item ti ∈ T .

minimize:
∑

i,j∈V, i6=j

fcij · fij

subject to: mincapij
≤ fij ≤ maxcapij

, ∀i, j ∈ V & i 6= j∑
j∈V, i6=j

fij = 0, ∀i ∈ V

∑
i∈T, j∈C

fij · icost ≤ maxpcost

fij ∈ Z≥0

(5)

4.2 Greedy solution and baseline

A greedy alternative begins by adding to the package items from the most wanted
category (as defined by the user preferences) and continues with the other cate-
gories in non increasing ivalue order, satisfying the composition restrictions and
without violating the aggregation restriction (i.e. maximum package cost). If
the package cost exceeds maxpcost, then the item with the minimum ivalue/cost
value is replaced with the next item (in non increasing rating order) of the
same category (in order to keep composition restrictions and improve towards
the aggregation restriction). The algorithm terminates successfully when all the
composition restrictions have been met (i.e. the requested number of items from
each category has been added to the package) without exceeding maxpcost. It
fails when all the items of a requested category have been examined but they
cannot fit for the package.

Finally, a baseline method, which ignores user preferences and assumes that
an item value (ivalue) is proportional only to the overall popularity of the item,
replace the predicted ratings for each user in the greedy algorithm, giving us a
non-personalized baseline.

Data: u, T, C, R, s, maxpcost, k
Result: top-k packages
forall cj ∈ C do

Tcj ←sort items in decreasing value (rating) order for category cj ;
end
forall Pi, i = {1, ..., k} do

Pi← top ncj items for each category cj ;
while Picost > maxpcost do

replace tx of minimum ivalue
icost

with tx+1: categorytx = categorytx+1

end
Update Tcj sets to produce the next package;

end
Algorithm 1: Greedy algorithm for the top-k package creation.

4.3 Composing top-k packages

In the minimum cost flow model, the problem of composing the top − k pack-
ages can be solved by repetitively using the minimum cost flow formulation for
slightly modified flow networks. Since it produces the optimum solution each
time, it is necessary to update the graph on each iteration by removing vertices
and edges based on what was selected in the previous packages. The Greedy
algorithm follows a similar strategy (e.g. items with the minimum ivalue/icost
scores that have already been recommended can be removed from the set of
candidate items).

4.4 Computational complexity

The problem of the Optimal solution which is formulated as integer linear pro-
gramming is NP-Complete [18]. In our case, the pruning of the equations by
using a certain number of items with higher values, the problem is solved in rea-
sonable time as it is demonstrated in section 5. The complexity of the Greedy
algorithm for the first loop (sort ratings by category) is O(|C| · |T | · log|T |) and
for the second loop is O(k · |T |), in the worst case where all items belong to all
categories and all items of the categories are examined for composing packages.
Since |C|, k << |T |, the computational complexity of the Greedy algorithm is
O(|T | · log|T |). This complexity allows the algorithm to perform in low running
times as shown in the experimental evaluation.

5 Evaluation

In order to implement and evaluate the proposed model, we have developed a
Java application3 that allows us to test the proposed solution in a wide range

3 The application jar file, source code, usage instructions and a sample dataset,
which was also used for the evaluation, are available for downloading at
https://goo.gl/IMbxq1.

of application scenarios, by modifying system parameters through a GUI. It
also permits an incomplete rating dataset (not all users rate all items) to be
imported and the missing ratings to be predicted using a Collaborative Filtering
(CF) algorithm4. The application is connected to an external linear programming
module5, which solves the optimization problem of the optimal approach.

Datasets: The first dataset, Movielens 1M6, includes almost 1 million ratings
provided by 6,040 users for 3,900 movies. The durations of films are retrieved
from the OMDB7 web service and used as the cost of each movie item. The
second dataset is a subset (1M ratings) of the Anime8 dataset, including more
than 7 million ratings provided by 73,516 users on 12,294 series. The cost for an
Anime series is set to be the number of its episodes.

Experimental parameters: Since the proposed solution is generic, it is not
possible to examine its performance in all possible parameter setups (e.g. the
number of packages, the package composition strategy etc). Although we eval-
uated many scenarios, due to space limitation, we fix some parameters, which
remain the same in all the experiments and evaluate the effect of the aggregation
and composition parameters in system performance. More specifically, we eval-
uate the top-10 packages, comprising of one item from each of the top-3 most
popular categories for each user and the choice is made from the top-500 highest
rated items (prediction) for the user.

Evaluation methodology: The item-item CF algorithm, an algorithm with
proven performance [19], with the Tanimoto coefficient for measuring item sim-
ilarity [20] being employed for predicting item ratings. For the evaluation of the
package recommender algorithms, we choose randomly 50 users who have rated
more than 500 items (there is a total of 396 such users in MovieLens and 223
in Anime dataset). For these users the 40% of their ratings is hidden (random
stratified sampling per user) and all the remaining ratings in the dataset are
used for training. We repeat this Monte Carlo cross-validation technique five
times [21] and report the average performance of the package recommender al-
gorithms. The metrics employed for the performance evaluation of our model are
the precision and value of each proposed package. In order to evaluate the time
performance, we also report the total running time. The package value, is given
in Equation 2. Precision, given in Equation 6 (where Tp is the set of items in the
package and Th is the set of highly rated “hidden items”), counts the number of
items in a package p that have been rated by the user, but the respective ratings
have not been used for training (“hidden items”). Since we do not want to rec-
ommend items that have actually received low ratings by the user, we consider
only those “hidden items” that have been rated highly (rating ≥ 4).

Precisionp = |Tp ∩ Th|/|Tp| = |Tp ∩ Th|/s (6)

4 Item-based CF implementation of Apache Mahout (https://mahout.apache.org)
5 IBM ILOG CPLEX solver.
6 https://grouplens.org/datasets/movielens/
7 http://www.omdbapi.com/
8 https://www.kaggle.com/CooperUnion/anime-recommendations-database

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

250 300 350 400

P
re

ci
si

o
n

Maximum duration (min)

Optimal
Greedy

Popularity

(a) Movielens Package Precision.

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

50 60 70 80

P
re

ci
si

o
n

Maximum number of episodes

Optimal
Greedy

Popularity

(b) Anime Package Precision.

Fig. 2: Precision with varying maximum package cost.

5.1 Results

As far as the maximum package cost is concerned, we have experimented with
various thresholds and the results in Figure 2 show that the precision increases
by relaxing this aggregation constraint as expected. The Optimal algorithm per-
forms better than the Greedy and both algorithms outperform the baseline ap-
proach.

A comparison of the three approaches, in recommending the top-k packages
of size 3 (1 item from the top-3 categories), as depicted in Figure 3, reveals
the superiority of the proposed approach, when compared against the Greedy
and the Item-Popularity alternatives. Although the precision of the greedy al-
gorithm is comparable to the optimum in the top-3 packages, the respective
package value quickly deteriorates, which means that the greedy algorithm rec-
ommends an equal number of “hidden items” but with lower ratings. As for the
time complexity of each algorithm is concerned, Figure 4 shows that the greedy
solution is much faster due to low computational complexity and returns the
top-10 packages in less than 1ms, whereas the Optimal Solution needs 700ms for
the top-10 packages.

Based on the experimental results, we conclude that both the Optimal and
the Greedy solution operate efficiently, achieve low running times and high pre-
cision rates. The Greedy solution can be applied in applications that require
low running times and low computational complexity even though it may lose
in package quality, whereas the Optimal solution can be applied in applications
that require a maximum recommended package quality.

6 Conclusions and future work

This work proposes a package recommender framework that employs user pref-
erences. Our model is not designed for a particular domain but can be applied
widely as it is comprised of a number of parameters which can be configured ac-
cordingly, allowing it adapt to various recommendation problems. An integrated
recommendation system, which incorporates all the required functionality, was

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

Number of packages

Optimal
Greedy

Popularity

(a) Movielens Package Precision.

20%

30%

40%

50%

60%

70%

80%

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n

Number of packages

Optimal
Greedy

Popularity

(b) Anime Package Precision.

 13

 13,2

 13,4

 13,6

 13,8

 14

 14,2

 14,4

 1 2 3 4 5 6 7 8 9 10

Pa
ck

a
g

e
 V

a
lu

e

Number of packages

Optimal
Greedy

(c) Movielens Package Value.

 12,6

 12,8

 13

 13,2

 13,4

 13,6

 13,8

 1 2 3 4 5 6 7 8 9 10

Pa
ck

a
g

e
 V

a
lu

e

Number of packages

Optimal
Greedy

(d) Anime Package Value.

Fig. 3: The Precision and Value of the top-k packages (for various k values).

 0,1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

m
s)

Number of packages

Optimal
Greedy

(a) Running Times for Movielens.

 0,1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

m
s)

Number of packages

Optimal
Greedy

(b) Running Times for Anime dataset.

Fig. 4: Running time for creating the top-k packages (for various k values).

developed in order to support the implementation and evaluation of our ap-
proach. The results of the evaluation experiments showed that the proposed
model fulfills its purpose and works effectively and efficiently.

The first positive evaluation results of our approach lead us to think about
further extensions. It is on our next plans this model to be applied and evaluated
in the nutrition domain as it may be a solution for recommending personalized
gastronomic diets. We are also working on automatically setting the system pa-

rameters which depend on the application, the dataset and the user preferences.
This may allow us to achieve high performance.

References

1. Ekstrand, M.D., Riedl, J.T., Konstan, J.A., et al.: Collaborative filtering recom-
mender systems. Foundations and Trends in HCI 4(2) (2011) 81–173

2. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
15th ACM SIGKDD, ACM (2009) 467–476

3. Angel, A., Chaudhuri, S., Das, G., Koudas, N.: Ranking objects based on relation-
ships and fixed associations. In: 12th EDBT, ACM (2009) 910–921

4. Xie, M., Lakshmanan, L.V., Wood, P.T.: Efficient rank join with aggregation
constraints. VLDB Endowment 4(11) (2011) 1201–1212

5. Xie, M., Lakshmanan, L.V., Wood, P.T.: Breaking out of the box of recommen-
dations: from items to packages. In: 4th RecSys conference, ACM (2010) 151–158

6. Xie, M., Lakshmanan, L.V., Wood, P.T.: Comprec-trip: A composite recommenda-
tion system for travel planning. In: 27th ICDE Conference, IEEE (2011) 1352–1355

7. Benouaret, I., Lenne, D.: A package recommendation framework for trip planning
activities. In: 10th RecSys Conference, ACM (2016) 203–206

8. Parameswaran, A.G., Garcia-Molina, H.: Recommendations with prerequisites. In:
3rd RecSys conference, ACM (2009) 353–356

9. Parameswaran, A.G., Garcia-Molina, H., Ullman, J.D.: Evaluating, combining
and generalizing recommendations with prerequisites. In: 19th ACM CIKM, ACM
(2010) 919–928

10. Parameswaran, A., Venetis, P., Garcia-Molina, H.: Recommendation systems with
complex constraints: A course recommendation perspective. ACM Transactions on
Information Systems (TOIS) 29(4) (2011) 20

11. Xie, M., Lakshmanan, L.V., Wood, P.T.: Ips: an interactive package configuration
system for trip planning. VLDB Endowment 6(12) (2013) 1362–1365

12. Xie, M., Lakshmanan, L.V., Wood, P.T.: Generating top-k packages via preference
elicitation. VLDB Endowment 7(14) (2014) 1941–1952

13. Interdonato, R., Romeo, S., Tagarelli, A., Karypis, G.: A versatile graph-based ap-
proach to package recommendation. In: Tools with Artificial Intelligence (ICTAI),
2013 IEEE 25th International Conference on, IEEE (2013) 857–864

14. Melville, P., Sindhwani, V.: Recommender systems. In: Encyclopedia of machine
learning. Springer (2011) 829–838

15. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recom-
mender systems. In: The adaptive web. Springer (2007) 291–324

16. Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V.: Algorithms. McGraw-Hill
(2008)

17. Bertsekas, D.P.: Network optimization: continuous and discrete models. Belmont:
Athena Scientific. (1998)

18. Matousek, J., Gärtner, B.: Understanding and using linear programming. Springer
Science & Business Media (2007)

19. Seminario, C.E., Wilson, D.C.: Case study evaluation of mahout as a recommender
platform. In: RUE@ RecSys. (2012) 45–50

20. Anil, R., Owen, S., Dunning, T., Friedman, E.: Mahout in action. (2012)
21. Dubitzky, W., Granzow, M., Berrar, D.P.: Fundamentals of data mining in ge-

nomics and proteomics. Springer Science & Business Media (2007)

