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Abstract—Drug polypharmacology or “drug promiscuity”
refers to the ability of a drug to bind multiple proteins. Such
studies have huge impact to the pharmaceutical industry, but in
the same time require large investments on wet-lab experiments.
The respective in-silico experiments have a significantly smaller
cost and minimize the expenses for the subsequent lab experi-
ments. However, the process of finding similar protein targets for
an existing drug, passes through protein structural similarity and
is a highly demanding in computational resources task. In this
work, we propose several algorithms that port the protein similar-
ity task to a parallel high-performance computing environment.
The differences in size and complexity of the examined protein
structures raise several issues in a naive parallelization process
that significantly affect the overall time and required memory.
We describe several optimizations for better memory and CPU
balancing which achieve faster execution times. Experimental
results, on a high-performance computing environment with 512
cores and 2048GB of memory, demonstrate the effectiveness of
our approach which scales well to large amounts of protein pairs.

I. INTRODUCTION

Drug-protein –or drug-target– binding simulations aim at
the advancement of medical and biological knowledge at a
fast pace and a low cost. The field of developing computation
services, which perform a computational simulation of the
structures’ bindings is gaining in popularity the last years
and the ability to give accurate estimations of potential true
positive drug-target bindings, has a strong practical flavor since
it aids drug development and enables drug re-positioning [1].

The assumption that a single drug is able to interact with
multiple targets is the essence of drug repositioning. The
knowledge of drug-protein interactions, from both drug and

The results presented here were obtained using HPC facilities at EPCC,
the supercomputing centre at the University of Edinburgh. The experiments
were funded by the Fortissimo project which received funding from the
European Union’s Seventh Framework Programme for research, technological
development and demonstration under grant agreement No 609029.

protein promiscuity view point can be exploited in the rational
design of promiscuous drugs with selective polypharmacol-
ogy. An important step of the drug-protein binding process,
according to Haupt et al. [2], as depicted in Figure 1, is the
pairwise structural comparison of a large set of proteins and
their potential drug binding sites. More specifically, the protein
comparison process comprises the following steps: a) protein
pairs alignment, b) candidate binding sites extraction, and c)
pairwise structural comparison of binding sites.

Fig. 1: Protein binding sites comparison pipeline.

In order to take advantage of the resources of a high-
performance computing infrastructure and allow the process to
scale-up to a large bioinformatics experiment, it is important
to analyze the protein comparison process and decompose it to
smaller tasks that can be executed in parallel. In this process,
possible bottlenecks and the reasons behind them are detected,
node synchronization issues are resolved and better memory
and CPU balancing is employed.

Several issues that arose during the parallelization of the
process have been addressed, such as a) the integration of the
different modules in a common parallel processing framework
(OpenMPI [3]), b) the efficient management of the available
memory, which is shared among the parallel processes and
must be carefully allocated in order to prevent the system from
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running out of memory or swapping virtual memory pages to
disk, and c) the optimum use of the available processors that
minimizes CPU idle time etc.

The major contributions of this work can be summarized as
follows:

• The protein similarity measurement process has been
ported into a parallel execution environment by integrat-
ing different software modules and open source software.
and re-engineering the software where necessary.

• An experiment that uses real-world data on a tangible and
realistic scenario has been conducted, in order to evaluate
the scalability of the solution.

• The parallel process was tested on different parallel
configurations achieving a speedup of 210 using 512
cores.

Section II focuses on related works on drug-protein binding
and on large scale bioinformatics experiments in parallel
architectures. Section III, explains the binding site similarity
problem and Section IV presents the software components
employed. Section V analyses the shortcomings of a naive
parallel solution and Section VI introduces the proposed
parallel algorithms. Section VII, provides experimental results
on increasing data loads and Section VIII provides the con-
clusions of this work.

II. RELATED WORK

Research on new purposes of existing drugs [4] falls in
different directions such as search for: i) similarity of side
effects, ii) similarity of gene expression, and iii) structural
similarity of drug binding sites [5]. In drug-protein binding,
the drug molecule that produces a signal by binding to a site on
the target protein is called “ligand”. A drug has several ligands
which potentially bind to target proteins, in the so called
binding sites which are distinguished into clefts, pockets, or
cavities. The rate of this binding is called “ligand affinity”.

The current work examines the drug-protein binding prob-
lem from the perspective of the structural similarity of binding
sites across proteins. Algorithms in this field of bioinformatics,
are based on geometrical comparisons between protein struc-
tures [2], [6], [7] and use protein structural information from
protein databases (e.g. in the Protein Data Bank [8] - PDB). In
this work, we port the processing pipeline of [2] to a parallel
architecture.

The original pipeline comprises the following steps: a)
pairwise protein alignment, b) extraction of candidate binding
sites, c) pairwise comparison of all binding sites. Structural
based alignment of binding sites can be achieved by iterative
search for the best translation/rotation, geometric matching,
alignment-free binding site comparison, etc.

With the increasing amount of structural data, an algorithm
that can identify the ligand binding sites of proteins on a
proteome-wide scale, can be really significant for in-silico
drug re-positioning experiments. In [9], the authors propose
a new shape descriptor that requires only the Ca atoms to
represent the protein structure, which proved fast, scalable to
large data set of proteins, and flexible. The approach has been

implemented in the protein alignment software SMAP1 which
can be used to align two proteins (query and target one), which
is also used for structural comparison of binding sites. SMAP
alternatives comprise among others: ProBiS [6], which solves
the problem by making use of a maximum clique algorithm,
and DaliLite [10] which computes optimal and suboptimal
structural alignments, by optimizing a scoring function.

Several large scale bioinformatics experiments exist in the
literature and parallel algorithms have been proposed that
take advantage of high-performance computing facilities or
cloud services (e.g. AWS) and distributed and parallel pro-
cessing tools such as Apache Hadoop or Spark. Implemen-
tations currently target the sequence alignment problem for
small [11] or larger sequences [12], phylogenetic analysis [13]
and analysis of large scale transcriptomic data [14]. The
implemented solutions report parallel efficiencies which reach
0.5 for architectures of 64 cores, whereas the performance for
larger architectures is significantly worse. The main reason for
this is the increased synchronization and data communication
overhead when the number of processing cores increases.

III. BINDING-SITE SIMILARITY

When a drug binds to a protein, the drug’s ligands form
a chemical bond with the binding site of the protein, which
can be a surface pocket or an occluded cavity of a certain
motif. Medium-sized globular proteins typically have 10-20
binding sites. Ligand-binding sites vary widely in size, most
within the range 102−103Å [15]. The binding sites of protein
structures are closely related to protein function, therefore,
their identification is essential to the understanding of their
interactions with ligands and other proteins. Even in the
absence of obvious sequence similarity, structural similarity
between two protein structures can imply common ancestry
and a similar function. If a protein has a known 3D structure
but no known function, inferences concerning function can be
made by comparison to other proteins.

The binding-site similarity approach, maps the problem of
drug-protein binding to a protein-to-protein similarity prob-
lem and more specifically to a similarity problem between
binding sites in different proteins. Subsequently, the heart of
any computation necessary for studying drug-protein bindings
and performing drug re-purposing in-silico experiments is a
structural similarity computation between protein structures.
Almost all computational methods of protein comparison use
a simplified representation of proteins, which are partitioned
into small patches corresponding to cavities and pockets and
then treated as geometric patterns or numerical fingerprints.
In this similarity computation process, first the structures of
the two proteins are parsed into meaningful 3D coordinates
in order to reduce the complexity of the pairwise comparison,
then the two resulting patterns are structurally aligned using
the transformation that produces the maximum number of
equivalent points, and finally a scoring function quantifies the
similarity based on aligned features.

1http://compsci.hunter.cuny.edu/∼leixie/smap/smap.html
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From an algorithmic point of view, binding site similarity
for drug-protein binding detection, takes as input a set of
protein 3D structures (query proteins) and a set of potentially
similar protein 3D structures (target proteins) and measures the
local similarity between parts of a query and a target protein.
The complexity of this computation is high, since all query
proteins are compared against all target proteins, each protein
having a few dozens of pockets, which are good receptors
(binding sites for drugs’ ligands). The algorithm first computes
the transformations that are needed to align two proteins and
then performs all local comparisons among their binding sites.

Each individual local comparison, usually involves mod-
eling the three dimensional structure of atoms as graphs.
Subsequent steps of the algorithm try to identify whether the
query and target graphs are isomorphic or one of the graphs
contains a subgraph that is isomorphic to the other. Since the
subgraph isomorphism problem is known to be NP-Complete,
some form of backtracking algorithm is used in order to find
a graph matching [16], [17]. Another popular approach is
to solve the maximum common subgraph problem, trying to
identify a graph which is isomorphic to both a subgraph of
the query and the target graph. The technique of reducing
the above problems into solving a maximum-clique or clique-
search problem into a compatibility or association graph [18]
has been used in the literature by many authors.

The drug-protein binding prediction for a given protein
structure currently takes on average 3,000 CPUh for finding
the alignments between the protein and all other proteins
and 20 CPUh for the subsequent evaluation of binding site
similarity. Due to the size of the Protein Data Bank [8], which
currently contains 115,000 structures, we are currently facing
big challenges in terms of computation time. Similarly, the
Binding Database2 currently contains 1,247,072 binding data
(measured binding affinities), for 6,435 protein drug-targets
and 550,250 small drug-like molecules.

IV. THE SEQUENTIAL PIPELINE

The binding-site similarity pipeline for a pair of proteins
comprises several different software components, written in
different technologies and programming languages. As a first
phase, the protein alignment software SMAP [9], [19] is used
to align the two proteins (query and target one). SMAP is
a well-known and commonly used software, for 3D ligand
binding site comparison and similarity searching of a structural
proteome. SMAP downloads the 3D protein structures from
the PDB [8].

The output of SMAP is a transformation of the query protein
to match the target protein and two object files, one for each
protein, that contain information about the residues that the
proteins comprise, their pockets, cavities and ligands, which
are the potential binding sites for a drug. Since only binding
sites of identical promiscuous drugs are aligned against each
other, we can use the ligand positions in an aligned pair of
proteins to judge the alignment. This is done by measuring

2https://www.bindingdb.org/
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Fig. 2: Initial binding-site similarity pipeline.

the average distance between the atoms of the two ligands,
i.e. their root-mean-square deviation (RMSD). Thus, SMAP
outputs a list of matching ligand pairs sorted in decreasing
RMSD order; two binding sites were considered similar if
their alignment yields a RMSD ≤ 3Å.

SMAP provides a first estimate of similarity. The next
phase of the pipeline is to use additional methods for ligand
alignment. The pipeline employs three additional software
components, OpenBabel [20], the Small Molecule Subgraph
Detector toolkit (SMSD) [21], and RDKit3.The whole pipeline
is integrated using the Python programming language. Regard-
less the additional toolkit used, a ligand molecule is first read
directly from the PDB file into memory and then transformed
using the SMAP output (rotation and translation) from the
previous phase. Thus, the additional phases of the pipeline are
dependent on the SMAP execution phase.

In the final phase, with the use of OpenBabel all possible
isomorphisms of the two ligand molecules are computed.
If no structural isomorphism is found, the SMSD toolkit is
employed in order to perform a substructure search, identifying
a maximum common subgraph (MCS)4. The longest mapping
with the minimum RMSD identified by this procedure, is
the final result that is retained. After the isomorphism and/or
substructure search alignments are identified, RDKit is em-
ployed to align the query and target binding site by performing
rotations and translations of maximum atom matches, such that
the RMSD is minimized. The final result is the best binding
site alignment identified by all the above methods.

V. PARALLEL ARCHITECTURE AND CHALLENGES

We assume access to a mid-range, industry standard high-
performance computing environment, such as INDY5. The
INDY system consists of several back-end nodes utilizing high
performance, low-latency interconnect. Each back-end node
has 4 AMD OpteronTM, 16 core processors, for a total of

3RDKit: Open-Source Cheminformatics Software, http://www.rdkit.org/
4The SMSD toolkit combines various algorithms in order to identify the

maximum common subgraph, and the decision to use a specific algorithm is
based on the complexity of the input molecules. For example molecules, which
potentially can be a subgraph based on atoms are handled by the VF+ [16]
algorithm first.

5https://www.epcc.ed.ac.uk/facilities/demand-computing/indy
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64 cores, which share 256GB of memory. For the purposes
of this experiment, access to a maximum of 8 such back-
end nodes was available, providing a total of 512 cores and
2048GB of memory. INDY is also equipped with a Lustre6

parallel file system, especially designed to handle highly
demanding I/O workloads. INDY utilises IBM’s platform HPC
cluster management software providing job level dynamic
provisioning of compute nodes. Individual back-end nodes
are Linux based machines. Regarding available software, the
requirements of all components that constitute the pipeline
of Figure 2 are the availability of (a) OpenMPI, (b) a Python
version 2.7 interpreter, and (c) a Java 5 virtual machine (JVM).

The work has to execute the pipeline of Figure 2 repeatedly
for a large number of protein pairs. The main optimization
objective is to take full advantage of the allocated resources
and minimize the total experiment time. Moreover, the pipeline
should be easily executed for different sets of protein pairs
without any custom protein-specific optimizations.

A. Baseline

The baseline parallel implementation of the binding-site
similarity pipeline, executes the whole pipeline as a black-box
taking two proteins as input and finding the best binding-site
between them. This includes both major phases of the pipeline
described in Section IV. The process is kickstarted by an MPI
root process which accepts as input two protein lists (of size
n and m respectively) that must be compared, and creates all
possible n×m proteins pairs. The list is subsequently scattered
to all p available processes, where each processor executes the
pipeline as a black-box for each of the received pairs. Finally,
the root process gathers all results into a final output file. The
approach is very simple to implement, but contains several
drawbacks.

A process that needs to execute the whole pipeline7 for a
single pair of proteins begins with the execution of SMAP,
which comprises the following phases: (a) a preprocessing
phase that creates and stores an intermediate representation
of each protein, and (b) the search for binding-site similarity
between the two proteins. Figure 3 contains a more detailed
view of the original pipeline which includes critical sub-phases
of the various employed components.

B. Parallelization challenges

1) Avoid repetitive protein pre-processing: The paralleliza-
tion of the preprocessing phase already poses some diffi-
culties. SMAP creates an in-memory representation of the
protein called conformer unit (CU). Building the conformer
unit is a resource intensive procedure, which includes the
identification and size characterization of surface pockets and
occluded cavities. Locating and measuring the protein pockets
and cavities, is based on computational geometry methods,

6http://lustre.org
7Since both phases of the pipeline require access to the protein structure

from the PDB, we assume that all the necessary files (one compressed file
per protein) are already downloaded and made available through the Lustre
filesystem.
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Fig. 3: Detailed view of the processing pipeline.

including alpha shape [22], and discrete flow theory. The
identification of the respective SMAP ligand and pocket motifs
in SMAP is done with the Quickhull algorithm [23]. In order
to reduce processing time and avoid rebuilding them for every
protein pair comparison, conformer units, once created, are
cached to disk. Even in this case, the following scenario may
occur, if the allocation of protein pairs to the processes is not
explicitly controlled. Two different pairs 〈p1, p2〉 and 〈p1, p3〉
can be scheduled in different processors and both get executed
simultaneously. Both processes will initiate the preprocessing
phase in order to compute the conformer units for protein p1.
Even if we resolve any synchronization issues that may arise
(by caching the conformer units in local storage, or using some
locking mechanism) when executing the pipeline for a large
number of protein pairs, a significant amount of processor
cycles and I/O bandwidth is wasted.

2) Balance Non-uniform Proteins Complexity: The struc-
tural complexity of different proteins can significantly vary.
As depicted in Figure 4, which presents a sample distribution
for the set of ≈ 800 malaria-related proteins that is used in
the experiments, most of the proteins have a handful of motifs,
however, there is a significant number of proteins which have
20-50 motifs and there are even a few with more than a 100
motifs (Figure 4a). A similar situation is evident with respect
to the size of the conformer units (Figure 4b).

For example, the pair of proteins 4M10 (the structure
of Murine Cyclooxygenase-2 Complex with Isoxicam) and
3KQZ (the structure of a protease 2) have 42 and 159 motifs
respectively and SMAP produces 3332 ligand pairs as output.
Respectively, the pair of proteins 3KWB (CatK covalently
bound to a dioxo-triazine inhibitor) and 2AUZ (Cathepsin
K complexed with a semicarbazone inhibitor) have 7 and 9
motifs respectively and SMAP returns 8 ligand pairs only.

The ligand alignment phase that follows SMAP execution,
is also affected by the non-uniformity of protein complexity.
This phase needs to wait for the preprocessing phase to finish
for each protein pair and this may differ significantly between
pairs. In the previous example, SMAP for the pair 4M10
× 3KQZ runs for more than 12 hours in order to find the
best alignment and generate all the matching ligand pairs and
transformations, whereas for the pair 3KWB × 2AUZ needs
only 9 seconds. A similar effect is also observed with respect
to memory requirements.
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Fig. 4: Histograms of (a) ligand/pocket size motif count, and (b) conformer unit (CU) size in KBs per protein for a sample of
≈ 800 proteins related to malaria.

The main challenge here is to evenly distribute the protein-
pairs on all processors such that the ligand pairs comparisons
that follow can start as soon as possible. At the same time
it is important to balance the memory requirements across
nodes. The worst case scenario is to schedule several memory
hungry protein pairs (requiring a few GBs in memory each)
to be executed in parallel on the same back-end node. Such a
scenario may result in degraded performance due to thrashing.

VI. IMPROVED PARALLELIZATION

This section presents various improvements over the base-
line implementation that overcome the shortcomings discussed
in Section V. In the following, the baseline algorithm which
uses scatter-gather to distribute protein pairs and then gather
the results, is denoted as algorithm SG. During the process of
engineering a highly efficient parallel version of the pipeline
with a load balancing scheme, we arrive at two other major
milestones, which we denote as algorithms LB-BAR and
LB-CU-MM. Since the experiments were performed on a
parallel architecture with at most 512 cores, a single process
plays the role of the scheduler/load-balancer instead of using
a full-blown distributed dynamic load balancing scheme.

Algorithm LB-BAR uses a single master process as
scheduler/load-balancer to execute the job. The computation
is divided into two main parts with a barrier point between
them. In the first part the scheduler chooses protein pairs and
requests their execution from the worker nodes. The worker
executes SMAP for a specified protein pair writing the result
on the Lustre filesystem. Each worker is configured to use
a local filesystem for caching the generated conformer units
to avoid any synchronization issues with other workers which
happen to work on pairs which contain the same proteins.
Workers notify the scheduler on job completion in order to
receive new protein pairs. After SMAP has been executed for
all protein pairs, the synchronization barrier is reached by all
processes. During the second phase, ligand comparisons are
executed for all ligand pairs produced in the first phase. In

a similar manner, the scheduler starts scheduling ligand-pairs
to workers until all the ligand-pairs have been executed. As
ligand-pair comparisons require significantly less time than
protein-pair comparison, after the barrier, the scheduler sends
batches of work to the workers. The size of these batches is
dynamically decreased [24] in a linear way based on the ratio
of uncompleted ligand-pairs over available cores.

Algorithm LB-CU-MM introduces several additional opti-
mizations. No synchronization barrier is used, which means
that the scheduler does some additional bookkeeping, but
may schedule a ligand-pair comparison for execution before
the execution of SMAP for all protein-pairs is over. This is
especially important since a few very slow SMAP protein
pairs do not block the execution of the ligand-pairs produced
from the other SMAP protein pairs. A second major opti-
mization is the creation of the conformer units (CU) as a
separate phase, which is scheduled before the execution of
SMAP. The motivation for first computing all conformer units
is (a) to avoid performing the same computation multiple
times, and (b) to have an estimate of each protein’s size
and structural complexity. The drawback is that the scheduler
needs to keep track of which conformer units have been
constructed before it schedules SMAP execution for protein
pairs. LB-CU-MM starts by scheduling the creation of all
conformer units that are part of some protein-pair. Each worker
executes the preprocessing phase of SMAP for a protein
and stores the resulting conformer unit in the Lustre parallel
filesystem. Together with the conformer unit the worker also
computes and sends back to the scheduler, the number of
protein motifs. After all proteins have been preprocessed, the
scheduler starts scheduling protein-pairs to be compared by
SMAP. The number of motifs of each protein are used in order
to estimate the number of ligand pairs that a pair of proteins is
going to produce. As more proteins finish the conformer unit
preprocessing, the scheduler starts scheduling protein-pairs to
be further compared always giving priority to the protein-pair
which has the largest product of motif pairs. Such protein-
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pairs are preferred as they are highly likely to require a large
amount of time and furthermore produce a large number of
ligand pairs which need further processing. After all protein-
pairs finish execution, the scheduler starts scheduling ligand-
pairs. All three scheduling phases may overlap as no barriers
are used.

Even with the above optimizations, for some protein-pairs,
SMAP may take a long time, even hours. At this point, the
only way to further optimize the execution is to split the SMAP
task into smaller tasks, which will be further interleaved
by the scheduler. Algorithm LB-CU-MM splits the execution
of SMAP into motif-pairs. The scheduler splits protein-pairs
which contain a large number of motif-pairs into several
smaller batches which are then executed in parallel. This is
now possible due to the separate preprocessing phase which
stores all conformer units.

A final optimization solves the issue of reaching the maxi-
mum memory of a backend-node. In the worst case scenario,
a bad allocation of tasks to the workers may lead to memory
consumption, which is more than the maximum allowed. Each
backend-node has 256GB of memory which means that each
core has an average of 4GB of memory. The scheduler keeps
track of the available free memory of each backend-node,
scheduling jobs to be executed with a maximum amount of
memory. As an example a protein-pair may be scheduled with
4GB of memory limit while a ligand-pair with only 2GB. The
limit is set at the OS level, meaning that the job simply fails if
it reaches this amount of memory. Failed jobs are executed in
a second round again, but now the maximum memory per job
increases to 32GB and the scheduler may execute at most 8
such parallel tasks per backend-node, trading speed for fault-
tolerance.

A rough estimate on the cpu and memory requirements of
each subtask can be obtained, after the first phase, by the
motif count of each protein. Instead of first scheduling large
protein-pairs, one could model the problem as an instance
of the resource-constrained project scheduling [25] problem
and employ more sophisticated heuristics. Moreover, during
the last decades a large body of research has been devoted
to the concept of dynamic tasking and work-stealing on
shared memory and distributed memory architectures. The
work on the runtime system of the Cilk [26] parallel pro-
gramming language, popularized randomized work-stealing as
a distributed dynamic load balancing scheme. More recent
works, such as [27] scale work-stealing into very large parallel
architectures. Another interesting direction is to assert whether
work-stealing would be effective in this case.

VII. EXPERIMENTS

This section contains a detailed experimental evaluation
of the aforementioned versions of the binding-site similarity
processing chain. In order to perform a real-case experiment
with high requirements, we assembled a list of proteins that
are related to drugs that treat malaria. DrugBank was used
in order to get all the known drug targets of malaria and
their UniProt identifiers. From the UniProt identifiers, which

random motifs malaria motifs
4fm5 42 6cox 27
3kwb 7 4ncx 23

1cjb 25
1nnu 10
1d3z 3
1cmx 7
1ceq 3
1c3t 4
1aar 4
1a5c 9

TABLE I: The set of proteins used in the small scale experi-
ment.

correspond to protein chains, only the distinct PDB IDs were
kept. Using this short list as query and the whole PDB as
target, a set of proteins was obtained which have highly similar
drug docking sites. After a careful examination of DrugBank,
the listed compounds for malaria and the associated proteins,
the result was a short list of approximately 800 proteins. These
proteins must be ideally compared with all the proteins in PDB
(>115,000), which results in a 800x115,000 executions of the
pipeline.

A. Setup

In order to observe the performance of the processing chains
in different scenarios, three different scale experiments were
performed. In the small scale setup only ten proteins from
the malaria list were compared against 2 randomly selected
PDB macro-molecules, resulting to 20 unique combinations
of protein pairs. Table I lists the 12 PDB identifiers and the
number of motifs contained in each, which is an indication
of the comparison complexity. The proteins 4fm5 with a large
number of motifs and 3kwb with a small number of motifs
were chosen. In the medium scale setup, the same 10 malaria
related proteins were combined with 50 macro-molecules in
PDB. Each of the 50 PDB entries is compared with each of
the 10 malaria related proteins giving 500 combinations. Two
of the 50 proteins have a large number of motifs (4fm5 and
4m10 around 40 each), 5 have a medium number of motifs
(from 20 to 30) and the other remaining 43 proteins have a
small number of motifs. Our purpose was to compare proteins
that either produced a large number either a small number of
ligands in order to simulate a real scenario. Finally, in the large
scale setup the same 10 malaria proteins have been compared
with 800 PDB proteins, resulting to 8000 unique combinations
of protein pairs.

All experiments were performed on INDY described in
Section V. All versions of the parallel pipeline (SG, LB-BAR,
LB-CU-MM) are executed for the three different scales. In each
case we gather execution times and speedups. All results are
averages over five separate runs. For the small scale setup the
20 protein pair comparisons were processed using a single
backend-node only, since INDY’s backend-nodes have up to
64 cores and 256GB RAM, and evaluated the performance
when using 8, 16, 32 and all 64 cores. For the medium and

206



8 16 32 64
0

500

1,000

1,500

2,000

2,500

3,000

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
SG LB-BAR LB-CU-MM

(a)

64 128 256 512
0

1,000

2,000

3,000

4,000
SG LB-BAR LB-CU-MM

(b)

64 128 256 512
0

20,000

40,000

60,000

80,000

1 · 105

1.2 · 105

1.4 · 105 LB-CU-MM

(c)

Fig. 5: Execution time (in seconds) over number of cores in small (a), medium (b) and large (c) scale experiments.

large scale setup the 500 and 8000 protein pair comparisons
respectively were processed using a multi-node setup and the
performance was evaluated by using 64, 128, 256 and all 512
cores.

B. Small scale experiment

Figures 5a and 6a present the execution time (in seconds)
and speedup of each algorithmic variant per machine cores for
the small scale setup. The performance of all three algorithms
is similar when using only 8 cores. Increasing them up to
64 produces some variations, however, the experiment is too
small in order to fully emphasize each algorithm’s advantages.
Algorithm LB-CU-MM scales better than the remaining ones
since it splits large SMAP tasks into many motif-motif tasks
which then balance much better into the available cores.
LB-BAR always behaves better than SG which is consistent
with our expectations. The reason is that it better balances
the second part of the computation which computes ligand-
pairs similarities. The running time of SG is dominated by the
slowest SMAP task which produces a large number of ligand-
pairs which are subsequently executed on the same core.

C. Medium scale experiment

In the medium scale experiment, the same 10 malaria related
proteins as in the small scale experiment were combined with
50 macro-molecules in PDB giving 500 combinations, which
produced 6591 ligand pairs. From the set of these 50 proteins,
2 have a large number of around 40 motifs, 5 have a medium
number of motifs (between 20 and 30) and the remaining 43
proteins have a small number of motifs (less than 15). The
execution time and speedup can be seen in Figures 5b and 6b
respectively. Multiple backend-nodes of INDY were used in
this experiment as the number of protein-pairs is larger. Each
of the three parallel variants are tested using 64, 128, 256 and
512 cores.
SG fails to terminate in a reasonable time even for 128

cores. This is due to the fact that it schedules 128 parallel
executions of SMAP. The allocation of these tasks exceeds the
256GB of memory that are available in some backend-node
which starts swapping virtual memory pages. This effect, while
possible, is not seen in Algorithm LB-BAR which successfully
finishes the task. The load-balancer/scheduler distributes tasks
to workers in a random fashion which in turn distributes
the memory requirements between backend nodes. Moreover,

the introduction of the barrier point between the two phases,
allows the system to settle down between computations.

Algorithm LB-CU-MM outperforms the other methods and
scales better when more cores are available. The decompo-
sition of larger tasks to smaller ones and the prioritization
of resource demanding tasks as well as parallel execution of
smaller batches of motif-pairs reduces the execution times.
In the case of 512 cores, the algorithm achieves a speedup
of around 98. However, as can be seen in Figure 6b, the
algorithm behaves better when using 64 or 128 cores. The
single-process scheduler and its bookkeeping add overhead to
the whole process and we assume that larger speedups could
be obtained by further optimizing the scheduler operation.

D. Large scale experiment

In the large scale setup the 10 malaria proteins are compared
with 800 PDB proteins, resulting in 8000 protein pairs, which
in turn generate more than 200,000 ligand pair comparisons.
Figures 5c and 6c contain the execution time and speedup.
Both algorithms SG and LB-BAR fail to terminate in a
reasonable amount of time. Algorithm LB-CU-MM needs 39
hours in order to perform all comparisons when running with
64 cores. When using the maximum of 512 cores it needs 10
hours for the same computations.

For the majority of protein pairs (>80%), the SMAP exe-
cution time is less than one minute and more than 96% of the
pairs finish in less than 5 minutes. However, there exist pairs
that take more than 3 hours. This imbalance further justifies
the use of prioritization of SMAP pairs and conformer units
extraction method as well as the decomposition of SMAP
protein-pairs in smaller batches for parallel execution. The
quick execution of ligand matching tasks allows the method to
better balance the load among processors. More specifically,
99% of ligand pairs need less than 1 minute to complete
and the maximum time for a ligand pair to complete was 7
minutes in our experiments. With the use of LB-CU-MM which
prioritizes the processing of larger compounds and appropriate
balancing of the ligand matching tasks, a 55 speedup was
achieved using 64 cores, 102 with 128 cores, 155 with 256
cores, and 210 speedup when using 512 cores.

A critical reason for the effective scaling of LB-CU-MM is
the additional memory management optimization. In our ex-
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Fig. 6: Speedup over number of cores obtained in small (a), medium (b) and large (c) scale experiments.

periments, several motif-pairs failed to execute when executing
with the first memory limit of 4GB, but completed in the
second round when running using a 32GB limit.

VIII. CONCLUSION

This article presented the challenges for the parallelization
of a drug-target binding pipeline, which comprises several pro-
tein alignment and binding site comparison steps and employs
different software modules, written in different frameworks
and programming languages. The analysis of challenges and
potential bottlenecks allowed us to decompose the sequential
execution process and re-assemble everything in a parallel exe-
cution process, which achieves better load balancing, memory-
handling, and prioritizes time-consuming tasks.

One possible direction for future work is to model the
problem as an instance of the resource-constrained project
scheduling, using motifs counts as an estimate of subtask
requirements in cpu time and memory, and employ more
sophisticated heuristics for the initial schedule.
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