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Abstract—Popular social networking applications such as
Facebook, Twitter, Friendster, etc. generate very large graphs
with different characteristics. These social networks are huge,
comprising millions of nodes and edges that push existing
graph mining algorithms and architectures to their limits. In
product-rating graphs, users connect with each other and rate
items in tandem. In such bipartite graphs users and items
are the nodes and ratings are the edges and collaborative
filtering algorithms use the edge information (i.e. user ratings
for items) in order to suggest items of potential interest to
users. Existing algorithms can hardly scale up to the size of
the entire graph and require unlimited resources to finish.
This work employs a machine learning method for predicting
the performance of Collaborative Filtering algorithms using
the structural features of the bipartite graphs. Using a fast
graph partitioning algorithm and information from the user-
friendship graph, the original bipartite graph is partitioned into
different schemes (i.e. sets of smaller bipartite graphs). The
schemes are evaluated against the predicted performance of
the Collaborative Filtering algorithm and the best partitioning
scheme is employed for generating the recommendations. As
a result, the Collaborative Filtering algorithms are applied to
smaller bipartite graphs, using limited resources and allowing
the problem to scale or be parallelized.

Tests on a large, real-life, rating graph, show that the
proposed method allows the collaborative filtering algorithms
to run in parallel and complete using limited resources.

Keywords-Recommender Systems; Collaborative Filtering;
Graph Partitioning; Graph Metrics; Social Networks;

I. INTRODUCTION

The traditional recommender systems have been examined
thoroughly during the past decade and received a wider
acceptance from e-commerce and content-rich sites (e.g.
news sites). Recommender systems are primarily based on
collaborative filtering (CF) techniques in order to provide
a personalized aspect to content delivery, tailored to each
user’s preferences. In social networking applications, such
systems recommend users, content, or both, through the
confluence of user preferences (likes, views, follows, etc)
social network-derived data (such as structure). The premise
in CF is to generate recommendations taking into consid-
eration the preferences (typically expressed as ratings) of

the user’s closest neighbors. The neighbors of a user can
be found based on: a) the similarity between users’ profile
features such as demographics etc, b) the items that users
have reviewed in common and the ratings they have provided
for them, c) the proximity of a user with other users in
the social graph. These inputs can be used individually or
combined.

The main challenges for social recommender systems
that employ the social network structure to enhance the
recommendation process, are: a) to take advantage of all the
available information in order to analyze the social, rating
and content similarity graphs that are formed, b) to adapt to
dynamically evolving graphs, and c) to scale to large graphs.
This work focuses on the problem of scaling the CF solution
to graphs that contain several millions of nodes and edges
by properly partitioning the ratings graph.

The two main alternatives for scaling to large graphs are
to either upgrade the infrastructure in order to cover the
increasing processing requirements, or to partition the graph
into smaller subgraphs which can be processed in parallel,
thus increasing performance without loosing in quality of the
produced results. Since infrastructure upgrades always have
an upper limit in the number of resources that can be used in
this work, we focus on the second alternative. In other words,
we split the initial problem into sub-problems that can be
solved more efficiently using parallel algorithms, without
loss of the effectiveness of the provided solutions (measured
by the quality of the generated recommendations).

We leverage our previous work on social graph parti-
tioning [1], which assumes that the users of a bipartite
rating graph are also connected in a unipartite network
with friendship or trust edges. Taking advantage of user
friendship information, we first partition the unipartite graph
(containing only the user nodes and user-to-user edges) and
then the bipartite graph (including user and item nodes and
user-to-item edges only), as depicted in Figure 1. Once
the social graph is partitioned all users that belong in the
same partition are examined as a separate social network.
The users of a social graph partition carry the ratings that



they have provided for items thus leading to a partitioning
of the bipartite graph too. The CF algorithm processes
the bipartite subgraphs in a separate process and generates
recommendations.

Although graph partitioning is a fast process, collaborative
filtering is quite slow and resource-demanding for large
graphs. So it is preferable to find the best partitioning scheme
by testing different alternatives and run the collaborative pro-
cess once on this scheme. In order to evaluate our proposed
method, we partition the original graph in various number
of partitions, examine several features of the resulting sub-
graphs and decide on the optimal partitioning of the original
graph. The decision for the optimal partitioning is based on
a prediction of the performance of the collaborative filtering
algorithm in each bipartite subgraph. For this prediction, we
use several structural features of the bipartite graph and train
a machine learning model that predicts the CF algorithm
performance. The features aim to capture the amount of
common ratings between users or between items, which
affect the quality of recommendations, since CF algorithms
use common ratings to measure user or item similarity and
recommend similar items to similar users.

Figure 1. Graph partitioning for recommendations.

The main contributions of this work, rely on:

• the prediction of the performance of CF algorithms in
each partition of the graph, using only the structural
features of each graph partition. This is a critical step
in the graph partitioning process as, the ability to
predict the performance of the recommendation process
without running the CF algorithm allows us to test
different graph partitioning schemes and select the
optimal scheme.

• the ability to scale up to huge graphs, with limited
resources. The partitioning of the ratings’ graph to
subgraphs based on the social network information,
results in many, smaller graphs that can be handled
using limited resources.

• the execution of the CF algorithm in a parallel and/or
distributed setup. The proposed system uses the CF

algorithm implementations provided by Lenskit1, which
are single threaded and executes them over Apache
Spark2 thus allowing task parallelization.

The rest of the paper is organized as follows: In Section
2 we summarize related work. In Section 3 we present our
proposed method for predicting the performance of CF in
the subgraphs using graphs’ structural features. In Section
4, we present the results of the experimental evaluation we
performed on a dataset from Epinions and in Section 5 we
provide the conclusions and the next steps of our work.

II. RELATED WORK

Over the past years, the success of social networking
applications and the integration of item review sites with
social networks led to a holistic approach in recommender
systems. This line of work is based on the assumption
that a user’s preferences are influenced more by these of
their connected friends, than these of unknown users [2],
rooted in the sociology concepts of homophily and social
influence [3]. Tang et al. [4] give a narrow definition of social
recommendation as “any recommendation with online social
relations as an additional input, i.e., augmenting an existing
recommendation engine with additional social signals” (a
broader definition, not applicable to this work, refers to
recommender systems targeting social media domains [5]).

In social recommender systems, the recommendation en-
gine considers two graphs in parallel; a social graph, which
contains edges between users, and a bipartite graph, which
contains user ratings for items (e.g. products, or content
provided by users). The social graph is used either for
improving the quality of recommendations or for reducing
the space for the recommendation algorithm by ignoring the
preferences of users that are not near-neighbors of the target
user.

Pham et al. in [6] propose a method that groups to-
gether users based on their social information and prove
that they can perform better than traditional techniques in
generating recommendations. Similarly, in [7] the authors
suggest a combination of CF techniques [8] and techniques
that factorize the user’s social friendship graph. The authors
in [9] use spectral Graph Partitioning Techniques on the
social graph in order to select the neighborhood of a user
and then apply User-Based Collaborative Filtering. Recently,
authors in [10] implemented a multi-way spectral clustering
approach, utilizing the top few eigenvectors and eigenvalues
of the normalized Laplacian matrix to compute a multi-way
partition of the data. A comprehensive survey of implemen-
tations that partition the original rating graph and perform
parallel and/or distributed collaborative filtering is presented
in [11].

In our previous work [1], we showed that graph parti-
tioning can significantly improve the time performance of

1http://lenskit.org/
2http://spark.apache.org/



the algorithms without affecting recommendation quality.
According to [12] the performance of the recommendation
algorithms is strongly connected to structural characteristics
of the resulting graph partitions, more specifically graph
sparsity and entropy (which is defined as the distribution
of co-ratings). In this article, we show that the sparsity and
entropy of the bipartite graph are not always good indicators
of the CF algorithm performance and propose a set of
metrics (graph and node specific), which improve prediction
performance. Based on performance predictions, we are able
to compare CF algorithm performance of two or more parti-
tion schemes and decide on the optimal number of partitions
before even applying the recommendation algorithm which
is a time consuming process. This allows us to decide before-
hand whether performing graph partitioning is worthy or not
and to choose the best number of graph partitions that will
lead to high quality recommendations and parallelization of
the recommendation problem. The proposed solution has
been implemented on Apache Spark, and employs Lenskit
recommender toolkit for creating recommendations.

III. BIPARTITE GRAPH PARTITIONING BASED ON
SOCIAL GRAPH INFORMATION

The main premise of CF is that a user u will be interested
in items that other users with similar profiles (i.e. users that
have rated many items in common with u and with similar
scores) have rated. When a social graph is also available the
social information is used to partition the user-item bipartite
graph into smaller subgraphs that can be handled more
efficient by the recommender (CF) algorithm. The intuition
behind this type of partitioning (i.e. before the application
of CF) is that a user will consider more seriously the ratings
provided by his/her friends than the ratings of any other user.
We should note at this point that any other methodology for
partitioning the bipartite graph can be employed. The main
components of this social recommender system process are
depicted in Figure 2 and detailed in the subsections that
follow.

More formally, we define the social graph Gsocial, which
contains edges Es between users Vu and the bipartite graph
Gbipartite, which contains user ratings R for items Vi, as:

Gsocial = {Vu, Es}, Es : undirected, unweighted (1)
Gbipartite = {Vu, Vi, R}, R : directed, weighted (2)

A. Graph Partitioning

The first step includes the partitioning of the social graph,
which is then used for the partitioning of the bipartite
graph. The partitioning of the social graph aims to find
groups of users that are socially connected (e.g. friends or
followers) and can be performed using an appropriate graph
partitioning or clustering algorithm. An example of a social
and a bipartite graph is presented in Figure 3.

Figure 2. The pipeline of the recommender system process.

Figure 3. The two graphs of a product-rating social network.

The partitioning of the social graph is followed by the
partitioning of the bipartite graph. If for example the so-
cial graph of Figure 3 is partitioned in two subgraphs
U1, U2, U3, U5 and U4, U6, U7, then the corresponding bi-
partite partitions will contain the respective users and their
provided ratings (denoted as blue and red edges respectively
in Figure 4).

Figure 4. Partitioning the bipartite graph based on the partitioning of the
social graph.

The outcome of the Graph Partitioning step is a set of



subgraph pairs (social - bipartite), namely UserPartitions
and RatingsByPartition, that contain all the i subgraphs
of Gsocial and Gbipartite defined as:

Gsociali :

{
Vu = ∪i=1..NVSi

∀i, j, i 6= j → VSi

⋂
VSj

= ø

(3)

Gbipartitei : V ∈ Vu


V ∈ VSi

e(us, it) : e ∈ E, us ∈ VSi , it ∈ Vi →
Gbipartitei = {VSi

, VipointedVSi
, E}

(4)

Algorithm 1 depicts the two graph partitioning processes,
namely the social graph (Gsocial or SG) partitioning algo-
rithm (lines 1-14) and the bipartite graph (Gbipartite or BG)
partitioning algorithm (lines 15-22). Given the social graph
SG{V,E}, for every edge eVp,Vq ∈ E we get the partition
that vertices Vp and Vq belong to, after the partitioning
process. If Vp and Vq belong to the same partition then their
social edge E is included in the set of edges of this partition.
Otherwise, this edge is moved to a set of social edges that
connect different partitions, which we call Cross-Partition
Edges set. During the bipartite graph partitioning process,
every item rating edge e{Vu, Vi, R} ∈ E the bipartite graph
BG(V,E), is assigned to the same subgraph with all item
rating edges of user Vu and all users clustered together with
Vu in the previous step.

The output of the graph partitioning process includes all
the bipartite graph partitions, which are then used as input
to the Recommendation Evaluation process. The next step
involves the application of the CF algorithm to each bipartite
subgraph in order to generate recommendations.

B. Collaborative Filtering

This subsection provides an overview of the most popular
CF algorithms, which employ user or item similarity cal-
culated over their common ratings. The partitioning of the
original graph to smaller subgraphs allows a recommender
system to run in a parallel setup: each bipartite subgraph
is processed in a separate thread, thus reducing the total
execution time compared to the single thread alternative.
Usually CF is a memory-intensive process, where the graph
information is loaded in memory in a sparse adjacency ma-
trix format. By splitting the graph to subgraphs, the memory
requirements for each thread are significantly smaller, and it
is feasible to run CF even on extremely large graphs. In our
previous work [1] we have shown that CF cannot be directly
applied to very large graphs using popular CF algorithms and
software in a commodity server.

The most popular CF method, user-based collaborative
filtering [13] is a straightforward algorithmic interpretation
of the core premise of collaborative filtering: “find other
users whose past rating behavior is similar to that of the

Algorithm 1 Graph partitioning algorithm
1: procedure SPLITSG(SG{V,E}, Cross, SubSGs)
2: {SsG{V,E}} = Partition(SG{V,E})
3: Cross = ∅
4: for e in E do
5: Vi = e.from
6: Vj = e.to
7: SsGFrom = GetSubgrForVertex(Vi, {SsG{V,E}})
8: SsGTo = GetSubgrForVertex(Vj , {SsG{V,E}})
9: if (SsGFrom = SsGTo) then

10: SsGFrom = SsGFrom∪{e}
11: else
12: IntClust =

InterClusterEdge(e, SsGFrom, SsGTo)
13: Cross = Cross ∪ {IntCluster}
14: SubSGs = {SsG{V,E}}
15: procedure SPLITBG(BG{Vu, Vi, R}, SubBGs)
16: {BsG{Vu, ∅, ∅}} = PartitionUsers(SubSGs)
17: for e in R do
18: V ′u = e.from
19: BsG{V ′u, V ′i , R′) =

GetSubgrForVertex(V ′u, SubSGs)
20: V ′i = V ′i ∪e.to
21: R′ = R′∪{e}
22: SubBGs = {BsG{V ′u, V ′i , R′}}

current user and use their ratings on other items to predict
what the current user will like”. Besides the user ratings, a
user-based CF algorithm requires a similarity function and
a prediction method to predict rankings and generate recom-
mendations. User similarity can be the statistical correlation
between two user’s common ratings (Pearson’s coefficient),
the respective Spearman rank correlation coefficient of users’
ranked items, or a cosine similarity between the users’ rating
vectors (users’ ratings for all possible items).

User-based collaborative filtering, while effective, suffers
from scalability problems as the user base grows (as it
happens with all k-NN algorithms) [14]. Item-based col-
laborative filtering provides a more scalable solution, even
when limited ratings are present. Rather than using similar-
ities between users’ rating behavior to predict preferences,
item-based CF uses similarities between the rating patterns
of items. If two items tend to have the same users like and
dislike them, then they are considered similar. Once again,
item similarity is computed using cosine similarity over the
ratings, Pearson correlation etc.

Finally, since the dimensions of both the User and the
Item space can be large, there are algorithms that perform di-
mensionality reduction before computing similarities. SVD-
based dimensionality reduction has been widely adapted to
collaborative filtering [15] and is by far the most successful
CF method. In SV D − based CF, the original user-item



matrix is decomposed to a matrix that maps users to a set
of fewer dimensions (userxfeature), a transposed matrix
that maps items to the same dimensions (featurexitem)
and a diagonal matrix that contains the singular values of the
decomposition. Then the predicted preference of any user u
for any item i can be computed as the weighted dot product
of the user-topic interest vector and the item-topic relevance
vector. Singular value decomposition, Principle component
analysis or any other Matrix Factorization method can be
used for reducing the dimensionality of the user or item
similarity problem [16].

C. Evaluation of recommendations

The quality of recommendations produced by a CF algo-
rithm or any other recommender system is usually evaluated
against some known preferences (user ratings) which have
been hidden by the system during the training phase. One
of the most commonly used metrics is Mean Absolute Error
(MAE), defined in Equation 5.

MAE =
1

n

n∑
i=1

|yi − ŷi| (5)

where yi is the actual rating, ŷi is the predicted rating for
all the n ratings that have been used for evaluation. MAE
can be averaged by user first and then get an average for all
users (MAE ByUser or Micro-Average) or can be directly
averaged for all ratings (MAE ByRating or Macro-Average).

An even more commonly used metric is the Root Mean
Square Error (RMSE), defined in Equation 6, which is also
averaged by user (RMSE ByUser or Micro-Error) or for all
ratings (RMSE ByRating or Macro-Error).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

RMSE and MAE measure how well the algorithm predicts
the user ratings. In the case of top-n recommendations, we
often need to evaluate the generated rankings. The most
commonly used metric for this purpose is the normalized
Discounted Cumulative Gain (nDCG) [17] evaluates the
predicted ranking of recommended items against their actual
ranking in user preferences etc. Cumulative Gain (CG)
(Equation 7) accumulates the graded relevance (predicted
vs actual rating) of the top-k recommendations.

CGk =

k∑
i=1

reli (7)

where reli is the graded relevance of item in position i of
the recommendations list.

Discounted cumulative Gain (DCG) penalizes highly rel-
evant items that are ranked lower in the list of recommen-

dations as shown in Equation 8.

DCGk = rel1 +

k∑
i=2

reli
log2(i)

(8)

Finally, normalized Discounted cumulative Gain (nDCG)
(Equation 10) divides DCG to the maximum possible DCG
(IDCG, see Equation 9), which is achieved when only rele-
vant items are recommended to the user and in decreasing
order of actual ratings.

IDCGk =

|REL|∑
i=1

2reli − 1

log2(i + 1)
(9)

where —REL— is the list of all relevant items for the user
(e.g. items with positive ratings or ratings above a threshold).

nDCGk =
DCGk

IDCGk
(10)

D. Finding the best graph partitioning

In order to have qualitative recommendations, it is im-
portant to choose the optimal bipartite partitioning scheme,
so that the bipartite subgraphs contain all the information
needed for recommending the correct items to users. For
example, if we choose too many partitions, the subgraphs
have only a few users who have rated a small portion of the
total items and possibly good recommendations for them,
are in a different partition. If we choose a scheme with few
but large partitions, we will not be able to determine whether
the CF algorithm will finish with the available resources.

This work proposes an indirect evaluation of CF per-
formance, by predicting and evaluating the performance
of the CF algorithm on different partitioning schemes of
the bipartite graph. The performance of CF algorithms is
strongly related to the similarity between users or items,
which in turn is affected by the overlap (amount of common
ratings) between users or items, as explained in Section
III-B. Based on this principle, we extract several structural
features for each subgraph in each partition scheme, which
aim to capture the rating overlap between users and items
and thus help us predict CF algorithm performance. We
extract these features from bipartite graphs of known CF
performance (i.e. we have executed the CF algorithms on
these graphs and have evaluated their recommendations), and
with this information we train a supervised model, which
is able to predict the quality of recommendations in each
rating subgraph and consequently in each partition scheme.
Then we choose the optimal partitioning scheme based on
predictions and run the CF algorithm in each subgraph of the
scheme, taking advantage of task parallelization. The overall
process is depicted in Figure 5.

The large bipartite graph is partitioned several times,
with a fast graph partitioning algorithm (Metis [18]), giving
different partition schemes. Starting with a large number of



partitions (n) and following a branch and bound strategy
allows us to find a performance maximum quickly. How-
ever, any other strategy can be applied instead for finding
overlapping or non-overlapping partitions.

Figure 5. The complete workflow of the proposed recommender system.

IV. STRUCTURAL FEATURES OF BIPARTITE GRAPH
PARTITIONS

According to previous work of Matuszyk and
Spiliopoulou [12], it is possible to predict the performance
of a CF algorithm on a bipartite graph using a linear
regression model that takes into account the structural
characteristics of the graph. More specifically, the authors
have shown that the performance of the CF algorithm is
linearly correlated to sparsity, Entropy and the Gini Index
of the graph. In this work, we evaluate this assumption
in similar bipartite subgraphs, produced by the proposed
partitioning algorithm, but also extend the set of features
in order to improve the prediction performance. Since CF
is based on the overlap (or similarity) between user (and
item) provided ratings, we measure the size of this overlap
as well as node related features (nodes can be either users
or items in a bipartite graph) that capture node centrality.

We have employed two types of graph metrics: a) metrics
that give a single value (or set of values/features) for the
subgraph as a whole (e.g. graph sparsity), and b) metrics
that give a different value for each node in the subgraph (e.g.
node clustering coefficient, pagerank, eigenvalue centrality
etc). In the first case, the value (or set of values) is the
feature that will help us predict the performance of the CF
algorithm. In the second case, instead of using the average
value for the nodes of each graph partition, we employ the
percentile values for the 10 percentile levels computed on
the set of vertices (user or item vertices) of the graph. Since
some of the features are not defined on bipartite graphs, we
slightly modify their definition as explained in the following.

The first feature that we employ is the sparsity of the
graph, which represents the ratio of edges against all possible
edges and for a graph G and is defined as:

Sparsity(G) = 1−
∑

u∈U |R(u)|
|U | · |I|

(11)

where U is the set of Users and I the set of Items.
The second feature is the Gini Index of the graph, which

quantifies how uniform is the distribution of co-ratings
among classes of users with similar number of ratings. The
Gini Index for a graph G is defined as:

Gini(G) = 1−
∑
x,y

(
cor([ux], [uy])∑
x,y cor([ux], [uy])

)2

(12)

where U = {|u| : u ∈ U} is the set of equivalence classes
over the set of users U, in which all users have provided
the same number of ratings. Consequently [ux] and [uy]
represent all users belonging in different user classes with
and x and y ratings per user in each respective class. Gini is
computed upon average number of co-ratings of user classes,
where a uniform distribution is ideal i.e. all classes have the
same number of co-ratings. Finally, cor() is the correlation
function between the two distributions.

In addition to Gini Index, authors in [12] propose the
similar metric of Entropy, which is defined as:

E(G) = −
∑
x,y

cor([ux], [uy])∑
x,y cor([ux], [uy])

log2

(
cor([ux], [uy])∑
x,y cor([ux], [uy])

)
(13)

Following the concepts elaborated in [19] and [20], we
implement additional metrics that capture the local density
of the bipartite graphs. For this reason, we define the
clustering coefficient for any node v of degree at least 2,
a metric that computes the probability, for any given node
chosen at random, that any two of its neighbors are linked
together. In the case of a bipartite graph, it is not feasible for
the neighbors (e.g. items/users) of a node (e.g. user/item) to
be linked together, so the Clustering Coefficient of a node in



the bipartite graph is defined as the average of its clustering
coefficients with other nodes:

BCC•(u) =

∑
i∈I cc•(u, i)

|I|
(14)

where u corresponds to each user and i to each item, and
they can switch position in the formula in order to compute
the bipartite clustering coefficient (BCC) for all nodes.

In order to capture the local density of the subgraphs, we
compute the Triad Count Statistics [21] of the subgraph,
which total to 16 different values for a normal directed
graph. In the case of bipartite graphs we end up with only
4 features that produce non-zero values.

Finally, the EigenvectorCentrality and
PagerankCentrality scores of each node in the bipartite
graph are computed. The directed edges of the bipartite
graph do not allow Pagerank and Eigenvector Centrality
to differ significantly among nodes, so the directed edges
are assumed to be undirected. Once again we distinguish
between item and user nodes. Centrality values for nodes
are sorted in decreasing order and the 10 percentile values
(i.e. the centrality score which is bigger than 10% of other
scores is the 1st percentile, etc.) are used as features.
This results to 10 Pagerank percentile features for user
nodes, another 10 for item nodes and 20 percentile features
for Eigenvector centrality. For the Bipartite Clustering
Coefficient the node values for all nodes are ranked,
without distinguishing between user and item nodes. Thus
we result with a set of 57 structural features for each graph
(7 graph features and 50 percentile features from 3 node
metrics) and the target features that we want to predict. The
candidate target feature can be any of the MAE, RMSE or
nDCG.

As depicted in Figure 5, the performance prediction model
have been trained using a set of bipartite graphs, for which
we have run all three CF algorithms and have evaluated the
recommendations quality (output feature). For these graphs
we computed the set of aforementioned structural (input)
features and trained the supervised model. Then on run-time,
we are able to predict the performance of CF algorithms
(output feature) on any subgraph of a partition scheme using
the calculated graph metrics as input features. The average
CF performance over all subgraphs is an indication of a good
or bad partition scheme.

V. EXPERIMENTAL RESULTS

To evaluate the performance of our proposed approach we
used a dataset from University of Koblenz-Landau3 (Oct.
2013) that contains social network information and rating
information from users. This is also known as the Epinions
dataset –Epinions is one of the largest consumer product
reviews site– which contains 131,828 unique users with

3http://konect.uni-koblenz.de/networks/

Table I
SOCIAL AND BIPARTITE GRAPH CHARACTERISTICS

Graph Characteristics

Social

Graph

Num. of Distinct Users 131,828

Num. of Social Edges 841,372

Average Degree 12.765

Bipartite

Graph

Num. of Distinct Users (raters) 120,492

Num. of Distinct Items 755,760

Num. of Ratings 13,668,320

Avg. outDegree/User 113.44

Avg. inDegree/Item 18.09

841,372 social relations and 13,668,320 ratings for 755,760
distinct items. The details are depicted in Table I.

A. Evaluation of the regression model

Since we are interested in the ability of our feature set to
predict the performance of the CF algorithm we use Pearson
correlation coefficient to measure the correlation between the
input variables and the target variable. If there is a strong
correlation then it will be possible to use the same predictor
for any partitioning of the large graph G into subgraphs.
Based on the output of our predictor, we can the choose
the best (most promising) partitioning and proceed with the
recommendation algorithm.

For the evaluation we choose to train our machine learning
model using subgraphs from different partitioning schemes
of the original graph up-to 1000 partitions, so that we have
a fairly large evaluation set while the subgraphs still contain
a lot of nodes and edges. According to the statistics of Table
I the average number of user nodes in each partition is 130
and the average number of items is 750.

Based on the preliminary work of Matysyzh [12], we
evaluate our predictions using only the three Graph Features
for the whole graph as suggested by the authors (i.e. Sparsity,
Gini and Entropy), then we compare with the node based
value-distribution features that we introduced in this paper
(Node Features), as well as with the full set of graph
and node features. We use Linear regression with feature
selection and Singular Value Decomposition for the predic-
tion of the target feature. For these two popular regression
techniques, we employed the Java implementation provided
in Weka data mining suite. More specifically, we employed
the Linear Regression algorithm using M5 attribute selection
technique (step-wise removal of attributes with the smallest
standardized coefficient until their is no improvement in the
estimation of the Akaike information criterion) and the SMO
algorithm (a sequential minimal optimization algorithm for
training a support vector classifier).

Linear Regression - LR and a Gaussian Radial Basis
Function network -RBF [22] are used for the prediction of
CF performance for the three main collaborative filtering



Table II
PEARSON CORRELATION BETWEEN PREDICTED AND ACTUAL CF

ALGORITHM PERFORMANCE.

3 Feat.
(LR)

All feat.
(LR)

3 Feat.
(RBF)

All feat.
(RBF)

User-User

RMSE 0.286 0.462 0.318 0.470
RMSE
by user 0.165 0.340 0.181 0.358

nDCG 0.087 0.503 0.269 0.510
MAE 0.240 0.450 0.257 0.460
MAE
by user 0.187 0.404 0.224 0.452

Item-Item

RMSE 0.245 0.384 0.268 0.382
RMSE
by user 0.078 0.231 0.081 0.228

nDCG 0.076 0.502 0.270 0.507
MAE 0.235 0.395 0.230 0.404
MAE
by user 0.209 0.383 0.217 0.410

SVD

RMSE 0.241 0.467 0.298 0.476
RMSE
by user 0.155 0.363 0.186 0.389

nDCG 0.136 0.524 0.293 0.569
MAE 0.240 0.492 0.276 0.509
MAE
by user 0.189 0.435 0.239 0.479

techniques (i.e. user-based, item-based and matrix factoriza-
tion). For each technique 5 different CF performance metrics
are examined (RMSE per user, overall RMSE, MAE per user
and overall MAE, and nDCG). All experiments are repeated
100 times using a random 90%-10% training-test split. The
average values are depicted in Table II4.

From the results in Table II we can draw the following
conclusions:
• Linear regression with feature selection predicts the

performance of CF algorithms worse than the RBF
network alternative.

• The correlation values resulting from the three initial
graph features (Sparsity, Gini and Entropy) are worse
than those resulting from all features and much worse
than those reported in [12] (the reported correlation for
RMSE was above 95%).

• The prediction of nDCG value is the most successful,
making the predicted nDCG score a criterion for se-
lecting the optimal partition in future setups.

The correlation between the predicted and the actual
values of nDCG for the 1000 partitions using the three
collaborative filtering algorithms is depicted in Figures 6, 7
and 8. The horizontal axis contains the graph id (the graphs
are sorted in a decreasing order of the actual nDCG value for
the CF algorithm) and the vertical axis contains the nDCG
value. The red line corresponds to the actual nDCG of each
graph and the blue line to the predicted nDCG. It is obvious
from the results of all CF algorithms that a correlation above
0.5 is helpful and the predicted nDCG values can be an
evidence for deciding on the best partitioning scheme.

4All results are within a ±0.02 range at 99% CI.

Figure 6. Regression model results for nDCG (User-based Algorithm).

Figure 7. Regression model results for nDCG (Matrix Factorization
Algorithm).

B. Evaluation of subgraph classification model

The correlation between the predicted and actual CF
performance values for the different bipartite subgraphs was
high, though not as high as expected, based on previous
research results. However, the correlation was obvious in the
plots. Moreover, when comparing between different partition
schemes of the large bipartite graph, it is more important to
choose the best partition scheme (i.e. the one that contains
subgraphs that will give good recommendations). It is also
important to distinguish between good and bad subgraphs
and replace the bad ones with subgraphs that contain more
ratings about items. Bad subgraphs are those that contain
users with few overlapping ratings for items and one possible
way to improve them is to add to them users (and their
ratings) that rate many items. By duplicating such users it
would be possible to improve the quality of recommenda-
tions created from each bipartite subgraph. This is out of
the scope of this paper and part of our future work plans.

In order to evaluate the performance of our prediction



Figure 8. Regression model results for nDCG (Item-based Algorithm).

models in distinguishing between good and bad subgraphs,
we repeat the experiments, this time training a binary classi-
fier with the values of the RMSE by user metric. Using a
RandomForest classifier we get an accuracy of 90.8% ±0.02
(at 99% CI) on predicting correctly whether the SVD CF
algorithm will output a “high” or “low” overall RMSE value
on a specific bipartite subgraph. The performance of SVM
classifier with a radial kernel function reaches 93.5% ±0.03
(at 99% CI) and similar are the results for other metrics and
CF algorithms.

Based on the above findings, we decide to train a binary
classification model, more specifically an SVM classifier on
the RMSE by user metric and we evaluate all future par-
titions of a large bipartite graph using this binary classifier.
For a partition scheme we extract the graph features for all
the generated subgraphs, we classify graphs using the SVM
classifier and we calculate the ratio of “good” subgraphs in
the scheme.

C. Time performance

All experiments were performed on a Dell PowerEdge
R730 server with 24 CPU cores and 96Gb of RAM in
total, running Apache Spark. The implementation of CF
algorithms provided by LensKit was used. Without the Spark
implementation, that we implemented, it was not be possible
to take advantage of our infrastructure, since Lenskit is
single threaded. Also, despite the large amount of memory
available it was not possible to run the three CF algorithms
on the whole graph not even on its 2 partitions. When the
graph was split to 65 partitions (we explain in the following
why) the sequential execution of the three CF algorithms,
for each partition, took 2 hours and 5 minutes.

Following the proposed approach, We evaluated 64 dif-
ferent partition schemes raging from 1500 to 4 partitions.
The partitioning process, which includes the execution of
Metis 64 times was completed in about 30 seconds (which
is less than 0.5 seconds per partitioning scheme. The time

for computing all the metrics for partitioning schemes with
more than 60 subgraphs is less than 10 minutes. Figure 9
displays the time needed for every partition scheme (from 4
to 1500).

Figure 9. Time for the computation of graph metrics for various partition
schemes.

Using the binary classifier explained in the previous
section, we predict for each subgraph in a partition the CF
performance as “good” or “bad”. The time for predicting
CF performance using either regression or classification
model is less than 1 sec for any partition scheme. Figure
10 provides a plot of the ratio of “good” graphs in each
partitioning scheme. From the plot, we see that for partitions
with more than 65 subgraphs the ratio is less than 1,
which means that a few subgraphs will not provide good
recommendations for the respective users. Below 65 graphs,
all subgraphs produce good recommendation results. So we
can say that 65 is the optimal number of partitions in our
case. Of course, partition schemes with more subgraphs (up
to 100) still have few “bad” subgraphs, which can be treated
by duplicating users from other subgraphs.

Figure 10. Ratio of “good” subgraphs in various partition schemes.

With the current setup, we are able to parallelize CF
algorithms execution taking advantage of all CPUs and
memory and reduce the total execution time for the 65



partitions to 8 minutes.
In conclusion, using the proposed approach, it takes 5 to

10 minutes for partitioning the large graph into subgraphs
and testing whether these graphs can produce high quality
recommendations. Depending on our strategy, we can test a
different partitioning scheme or improve selected graphs of
the initial partitioning scheme.

VI. CONCLUSION

This article presented a methodology for predicting the
performance of collaborative filtering algorithms using the
structural features of the bipartite graph. The methodology
incorporates several metrics that either apply to the whole
graph or to each node or edge separately and results show
that the improvement from the use of the node metrics’
value distribution features is significant (correlation is above
0.5). Any further improvement that takes into account more
structural features, both graph-based, such as redundancy
coefficient, and node-based, such as betweeness central-
ity, etc must also consider the computational complexity
and the time needed for finding the optimal partition-
ing scheme.Using the proposed methodology, a recom-
mender system will be able to generate different partitioning
schemes, predict the performance of CF in each one of them
and select the optimal partitioning. Thus it can handle huge
graphs by splitting and processing each sub-graph separately
and perform faster if more resources are available to be used
in parallel.
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