
Organising Web Documents into Thematic Subsets using an
Ontology (THESUS)

B. Nguyen1, M. Vazirgianis1,2, I. Varlamis2, M. Halkidi2

1INRIA
Domaine de Voluceau
78152 Le Chesnay CEDEX
FRANCE
Firstname.Lastname@inria.fr

2Athens University of Economics and Business
76 Patision Street

Athens, 10434
GREECE

{mvazirg, varlamis, mhalk}@aueb.gr

Abstract
We describe in this article the architecture and of a
system whose goal is to organise Web documents into
clusters. We use incoming links to find accurate
keywords describing each document. We assume an
ontology of the domain we are interested in, and we use
a thesaurus (WordNet) in order to map the keywords
that describe a document to terms of the ontology. We
then cluster the documents using a novel similarity
measure, and a modified version of the incremental
DB-Scan algorithm.

A. Introduction

The general context is that of a user looking to
construct a data warehouse on a specific domain, by
using the information found on the Web. For a
complete outlook on the problem, we refer the reader to
[HNV+02], in the following paragraph we detail the
core ideas of the system and the assumptions we hold
for this article.

We suppose that this user is a “specialist” of the
domain, and has at his disposal (or has constructed) an
ontology (IS-A tree) describing the domain. In
[HNV+02] we propose the architecture of a system that
lets a user construct a data warehouse on the topic
described by this ontology, using the following modules
: page fetcher, semantics enhancer, classifier, query
engine. In this article, we detail the system architecture.
It is important to note that the input of the classifier is a
set of documents, that have attached to them a set of
weighted terms of the domain ontology. We base most
of our reasoning in the article on the assumption that we
are provided with such a set of terms. For more
details on how this set is constructed, we refer to
[VN+02] and [HNV+02]. The goal of our system is the
following: Given documents that are characterized by a
(short) set of weighted terms from an ontology, find a
way of clustering related documents together. We
propose a clustering scheme, based on a novel
similarity measure between sets of terms that are
hierarchically related.

Traditionally, in order to achieve this goal, such a user
would apply Information Retrieval techniques such as those
described in [SMcG83]. However, these techniques most
often rely on exact keyword matching, and do not take into
account the fact that the keywords may have some semantic
proximity between each other. Let us stress that we are
running the clustering on the sets of terms that describe the
document, and that this list can be quite short. For instance a
document might be characterized by the words “cat, food”
and another with the word “feline, menu”. By using
traditional methods these documents would be judged
unrelated, however we will show that by using a distance
between terms in an ontology, we are able to compute a
meaningful similarity measure.

B. Related Work

THESUS system
We refer to [HVN+02, VN+02] for a longer version of this

paper and a more detailed description of the THESUS
system, including many experimental results.
Document Clustering

There has been large interest in this problem in the
Information Retrieval community [Fis87,AGY99]. Our
problem is more specific since we are clustering Web
documents [ZE98], and take links into account [Kle99]. In
order to cluster our documents we an algorithm based on
incremental DB-Scan [EK+98].
Similarity Measures

In order to cluster the documents we need to use a
similarity measure between sets of elements of a hierarchy
(ontology). We are unaware of any specific work in the field,
and have as such devised our own similarity measure. Our
work is based on the Wu and Palmer [WP94] similarity
between single elements of a hierarchy. In the general
literature there has been interest for the topic of distances
between sets of points [EM97,GHO+96]
Related Systems
- Kartoo [Kar] : a meta search engine that exploits links
- Vivissimo [Viv] : a clustering engine that uses the output of
a search engine.

- Haliwala et al. [HGI00] also present a system that
uses links to cluster web pages together, but do not use
the semantic approach we have here.

C. Preliminaries

In this section, we explain how we create the ontology,
and how we get the initial set of documents.

Ontology creation
In order to provide semantic clustering functions, we
need to refer to an ontology of terms that are relevant to
our domain of interest: the ontology used is based on
DMOZ, manually trimmed and rearranged.

In what follows, we assume that the ontology is a tree,
for the purpose of applying various similarity measures.

Document acquisition

Get top documents
for each concept

CORE

G
et

 o
ut

go
in

g
lin

ks

G
et

 in
co

m
in

g li
nk

s

EXTENDED CORE

Figure 1. Document Acquisition Extended Core

We use a document acquisition module, whose goal is
to create a collection of web documents that possibly
relate to the predefined ontology. In order not to bias
the pages collected, the acquisition process starts from
an initial core of documents and expands it with the
documents that they point to. The concepts
(C1,C11,C12,…Cm) of the ontology are used for the
generation of the core in the following manner:

Given that the ontology has a tree structure, we
generate a string (C1+…+Ci) for each concept (Ci) that
represents the path from the root to that concept. Then
the path of each concept is used to query a web search
engine by using the conjunction of all words that appear
in the path. We retain the top n documents that contain
all the concepts in the path. Therefore an ontology of m
concepts will result in m queries and will generated a

core that contains a maximum of mxn documents. However,
the number of documents in the core is smaller since certain
documents may appear more than once. Then the core is
extended: first with the documents that are pointed to by the
documents in the core (outgoing links) and secondly by the
documents that point to the documents in the core (incoming
links – they can be collected using a service provided by
many web search engines, Google being an efficient one).

Other precalculated operations:
In order to speed up a number of operations, the Wu and
Palmer[WP94] similarity between all the elements of the
ontology will be pre-calculated. This is a table mxm, where m
represents the number of terms in the ontology. We assume
that the distance can be stored in a 4 byte float. This means
the table takes under 1MB in main memory, which is quite
reasonable. Since these similarities will be used extensively,
especially during the clustering algorithm, it is important to
keep them cached in this manner.

D. System Architecture

In this section, we will give the general architecture of
THESUS. Refer to Figure 2 for its schema. We assume an
initial set of documents D = {di}, that are somewhat related
to a certain thematic domain of interest, and an ontology O
on this thematic domain (e.g., Arts, Music, Technology, etc).

Document
Database

Page Classification

Similarity Matrix
Calculator Clustering Module

Query Module
Thematic Subsets

& Clusters

Ontology Creator

Thematic Set of
Pages

Presentation Layer

Wu&Palmer
(ki,kj)

Enhancement Module

Ontologies

K
1

K
2

K
n

Page-id, {(wi,ki)}, {(vj,Cj)}

Thesaurus

Document
Acquisition module

Figure 2. Proposed THESUS System Architecture

General explanation of modules

We can divide the operations THESUS will perform
into different modules (see Figure 2).
1. Enhancement module: this module enhances each

document in the initial thematic set, by extracting
keywords to characterize the page. These keywords
are then mapped to categories of the ontology of
the domain.

2. Clustering module: The pages are clustered, and
each cluster is labelled.

3. Query module: we can apply simple keyword
based queries to our warehouse.

These three modules are connected with a database in
which we store the document, the thesaurus, and the
ontology.

D.1. Enhancement module:

The documents (otherwise pages) are processed in
order to enhance their classification. The first step is to
process the incoming links to D and extract keywords
from the respective source pages. Each keyword ki is
mapped to a category cj of the ontology O, using a
thesaurus (WordNet [WorNet]). A similarity measure,
the Wu & Palmer distance, will be applied to measure
the degree of similarity between the keywords and
categories. The outcome of this process is that every
document in the original set will be enriched with:

- Keywords and weights (indicating the relevance
between the keyword and the page)

- Categories of the ontology into which each document
falls and weights. (defined by the keyword weights and
the distances on the Ontology).

We use the following notation to define these enhanced
documents:

Definition: an enhanced document is the triplet (Doc,
K, C), where Doc is the document itself (or some way
of accessing it, such as its URL), K (resp.C) is the set of
couples {(wi,ki)} (resp. {(vj,cj)}) of weighted
keywords (resp. weighted categories) that define the
document (wi (resp. v j) is a real, ki (resp. c j) is a string).
Note that CURSIVE CAPITALS indicate weighted sets
of words.

The option to integrate in this module a parser to extract
words from the document itself and process them will
be also taken under consideration in order to provide
openness to other systems interconnection. Since the
clustering module uses sets of weighted keywords,

regardless of how these sets were constructed, this will be
straightforward.
We will focus on how we extract the keywords from the links
further down.

Reverse Link Keyword Extraction:
In THESUS system, keywords will be extracted from
- the link anchor (i.e. the string between the <a> and
tags) and
- from two text strings (each of 100 characters long), one
preceding the starting link tag and another following the
ending link tag.
The “window” will be trimmed whenever certain html tags
appear, such as <a>, , <tr>, <td> etc, because such tags
usually indicate the logical end of the hyperlink neighboring
area. As a result the mean number of keywords extracted for
each hyperlink is less than five words.
Every keyword extracted will be assigned with a weight. We
are currently exploring how to best extract this weight.

Finding related concepts:
Until this step, we have enhanced the document with some
keywords that define what the document deals with. Yet,
THESUS goes even further by defining a similarity measure
between words, based on an ontology and a thesaurus. Given
the thesaurus and the ontology from pre-processing
components we can find for every word defining our
document, which category of the ontology it is closest to. The
similarity between a keyword ki and the closest category ci of
the ontology is seen as the weight vi of this category in the set
of categories that defines the document.

The output of this module is an enhanced document as
defined in previous paragraph. Note that the Doc entry of the
triplet can be replaced with the URL of the document.

D.2. Clustering module:

In this phase, the documents are fed into the clustering
module. The clustering algorithm will be based on a
similarity measure between sets of weighted words. This
function will be able to measure the similarity between the
sets of keywords (resp. sets of categories), and also to
measure the distance between a keyword and a category.
Here a task is the definition of a distance between enhanced
documents. In fact, this boils down to finding the distance
between set of weighted strings.

THESUS will combine the use of a similarity measure
between elements of the set to calculate a more accurate
similarity between the sets themselves. [EM97] proposed an
interesting study of different measures between sets, and
evaluates their complexity. For the algorithms proposed, the

complexity ranges from polynomial (in the number of
words in each set) to NP. Thus to be competitive,
THESUS algorithm needs to have a polynomial
behavior with regards to the number of elements in
each set. THESUS will propose a novel similarity
measure that is relevant to this problem. This similarity
measure will be a generalization of Wu & Palmer
[WP94] to sets of elements in a hierarchy. Using the
notations given further up A and B are two sets of
weighted keywords or concepts: A={(wi,ki)} and
B={(vi,hi)}

()()

()()√√↵
�

�
�
�


↔

+
�
�
�

�

√
√
↵

�
�
�
�


↔=

�

�

= 

= 

|B|

&,
|]A|,[

|A|

&,
|]B|,[

,max

,maxBA,(

1 1

1 1

1

1

2

1
)

i
jiPWji

j

i
jiPWji

j

khS
H

hkS
K

Where ()ji

ji
ji vw

vw

,max, ↔
+

=
2

and �
=

=
||

)(,

A

i
ixiK

1

and
() ()()jiPWxi

Bj
xiPWxi hkShkSxix ,max,|)(&,

|]|,[
&, ↔=↔=

 1

In an analogous way we define H and µ. We do not
have the place to detail the similarity measure here, we
refer to [HVN+02] for full details and examples.

Web Document Clustering Algorithm
Clustering aims at organizing patterns into groups,
allowing us to discover similarities and differences, as
well as to derive useful conclusions about them
[HBV01]. The module will cluster web documents in
order to discover meaningful groups. The problem is
considerably different compared to the case of points in
a metric space: in our case, the objects to be clustered
are sets of (weighted) strings that correspond to
categories of a domain ontology.
In this space there are no coordinates and ordering as in
a Euclidean metric space. We only have a similarity
measure (as defined in the previous section) between
sets of (weighted) categories. We adopt this similarity
measure. The clustering algorithm will be a
modification of the density criteria used in popular
density based algorithm DBSCAN.

The input of the clustering algorithm will be:
- the sets of weighted keywords characterizing each
document,
- a threshold for the definition of the neighborhood,
MinSim

- the minimum number of documents in the neighborhood of
a document, MinDocs.

The output will be:
- the partitioned set of documents with respect to MinSim
and MinDocs, and
- a set of documents, which are considered as noise.

Once the clusters have been found, a very important issue is
their labelling (i.e., the assignment of a succinct yet
descriptive set of categories to each cluster in order to
facilitate user navigation and querying). A cluster Γi is
defined as: Γi = {cj} where for every j, cj is a category of
ontology O. The output of the clustering module is the set of
enriched documents, along with the cluster id to which each
document belongs.
Grouping documents together is itself a semantic
enhancement. We would also like to find appropriate labels
for each cluster for the following reasons:
- Simply grouping documents together does not give a way of
characterizing this set.
- We need some sort of way of calculating which cluster a
given query is most closest to.
- Giving a more precise characterization to the cluster will
enable easier browsing through the set of documents as a
whole.

In this context two questions will be answered during the
System Design Work package:

What sort of label?
THESUS will deal with ways to process sets of keywords, or
weighted sets of keywords. It seems pretty straightforward to
try to construct labels of this type for every cluster generated.
This would in particular reduce the task of finding on which
cluster we should apply a keyword query, to a simple
similarity measure between that query (i.e. the set of
keywords) and all the labels of the clusters.

How to construct such a label?
We want these labels to have some sort of significance.
THESUS will consider two approaches on this task:
a. without weights:
- Construct U, the union of all concepts that appear in at least
one document of the cluster.
- For every concept Ci in U, calculate the number of
documents in the cluster that it appears in.
- Keep as a label for this cluster all the concepts Ci that
appear in at least T% of the documents of the cluster where T
is a threshold value.
b. with weights:

It is pretty straightforward to assign as weights the
percentage of documents of the cluster that are
characterized by a given keyword.

D.3. Query module:

The clusters produced by the previous module can be
exploited to answer user queries, in a more meaningful
way. In THESUS, we consider queries to be simple
keyword based queries. Let us briefly explain the query
mechanism, that we will facilitate THESUS system.
Let q={ki} represent a query, where ki are keywords
defining the user’s interest. THESUS will first of all
identify the cluster(s) relevant to q. The irrelevant
clusters are pruned and will not be considered in the
search. The query-processing module then proceeds to
determine within the selected cluster(s) the documents
most relevant to the query, and can present the results
ordered, and classified.

Query Processing Algorithm
In order to provide answers to a keyword based query,
THESUS will have to perform the following actions:
- Map the keywords of the query to the ontology
Using similarity measres, we can map each keyword to
a word in the ontology, in the same way as we do for
the clustering module. The Wu & Palmer similarity
between a keyword and the category of the ontology is
seen as the weight of that category. We will only keep
categories that have a weight above a certain threshold.

- Find which cluster(s) is(are) closest to the categories
that now define our query.
We will have to calculate the similarity of the query,
that is now a set of weighted categories of the ontology
with all the labels of the clusters. Since the Wu &
Palmer distance between categories of the ontology is
cached, this operation will be very fast This prunes out
a lot of clusters to make the next steps faster.

- Calculate the similarity between the keyword query,
and every document in the selected clusters.
To do this, we have to consider their keyword
description, since it is more precise. Once again, we
will use here the similarity measure between sets of
(weighted) words, but this time the Wu & Palmer
distance is not cached (THESUS will not precalculate
all the similarities of words in thesaurus).

- Return the documents that are the closest in terms of
similarity.
For every document returned by the query, we have a
similarity measure, so we can rank the results. We also

present the results within the clusters they were found in, to
help users browse results faster.

E. Conclusion

In this article we present the architecture of a system,
THESUS, designed to cluster Web pages together, using
incoming links to better describe pages, and an ontology of
the domain. We give some experimental results in
[HNV+02].

Future Work:
- We plan on improving the way in which we construct the
hierarchy of clusters. We are currently experimenting using
the CobWeb algorithm to this end.
- The query system can be made more efficient. This involves
improving the mapping techniques that we use in order to
determine which word of the ontology a generic word should
be mapped to. This is a topic that we are currently working
in, and that is very closely linked to this article, since it is
used to define the small sets of terms that define a web
document.
- We will investigate storage and query optimization, using
M-Trees, that are adapted to our problem.

Acknowledgements
We would like to thank the following people for their

helpful discussions on various topics related to this paper: G.
Cobena and S. Abiteboul (general work on the SPIN projet
[ANC+02], a similar effort to construct a personal thematic
warehouse). Ch. Froidevaux, C. Nicaud, K. Nørvåg, B. Safar
and L. Segoufin(similarity measures and distances). J.P. Sirot
(ontologies). P. Rigaux and P. Veltri (R*-Trees).

F. Bibliography

[ANC+02] Serge Abiteboul, Benjamin Nguyen, Gregory
Cobena and Antonella Poggi, “Construction and
Maintenance of a Set of Pages of Interest (SPIN)” to
appear in Bases de Donnees Avancees (2002)

[AGY99] Charu C. Aggarwal, Stephen Gates and Philip Yu,
“On the merits of building categorization systems by
supervised clustering”, Proceedings of the 5th ACM-
SIGKDD p.352-356 (1999)

[EK+98] Martin Ester, Hans-Peter Kriegel, Jorg Sander,
Michael Wimmer and Xiaowei Xu, “Incremental
Clustering for Mining in a Data Warehousing
Environment”, Proceedings of the 24th VLDB Conference
(1998)

[EM97] Thomas Eiter, Heikki Mannila, “Distance measures
for point sets and their computation”, in Acta Informatica
Journal, 34, 109–133 (1997)

[Fis87] Douglas Fisher, “Knowledge Acquisition via
Incremental Conceptual Clustering”, in Machine Learning
2: p139-172 (1987)

[GHO+96] J. Green, N. Horne, E. Orlowska and P.
Siemens, “A Rough Set Model of Information
Retrieval”, Theoretica Infomaticae 28, pages 273-
296 (1996)

[HBV01] M. Halkidi, Y. Batistakis, M. Vazirgiannis,
“On Clustering Validation Techniques”, Intelligent
Information Systems Journal, Kluwer Pulishers, 2001

[HGI00] Taher H. Haveliwala, Aristides Gionis and
Piotr Indyk, “Scalable techniques for clustering the
Web”, in proceedings of Webdb 2000 worshop

[Kar] http://www.kartoo.fr
 [Kle99] J.Kleinberg, “Authoritative sources in a

hyperlinked environment”, Journal of the ACM
46(1999).

[VN+02] I. Varlamis, B. Nguyen, M. Vazirgianis and
S. Abiteboul, “Effective Thematic Selection in the

WWW based on Link Semantics”, Technical Report (2002)
[HNV+02] M. Halkidi, B. Nguyen, I. Varlamis and

M.Vazirgiannis, “THESUS: Organising Web Document
Collections Based on Semantics and Clustering”,
Technical Report (2002)

[SMcG83] Gerard Salton, Michael McGill, “Introduction to
Modern Information Retrieval”, McGraw-Hill, New-York
(1983)

[Viv] http://www.vivisimo.com/
[WorNet]http://www.cogsci.princeton.edu/~wn/
[WP94] Z. Wu and M. Palmer “Verb Semantics and Lexical

Selection”, Proceedings of the 32nd Annual Meetings of
the Associations for Computational Linguistics, pages 133-
138.

[ZE98] Zamir, Etzioni, “Web document clustering: a
feasibility demonstration”, in proceedings of ACM-SIGIR
‘98

