International Center, Sendai, Japan.

IEEE Congress on Evolutionary Computation, May 25-28, 2015, at Sendai

Evolutionary data sampling for user movement
classification

Iraklis Varlamis
Department of Informatics and Telematics
Harokopio University of Athens
Athens, Greece
Email: varlamis@hua.gr

Abstract—Smartphones are nowadays used for recognizing
people’s daily activities and habits, by collecting and analysing
user activity information in real-time. In order to demonstrate
this methodology, we have developed GPSTracker' a prototype
application for Android phones, which collects position, speed,
altitude and time information and performs real-time classifica-
tion of user’s movement. The GPSTracker application also uses
geo-location information abouts Points Of Interest (POIs) such as
bus or metro routes, parks and stadiums in order to improve the
set of features used for the classification of a type of movement. In
this work, we use evolutionary algorithms, in order to reduce the
number of samples required for training our classifier, without
loosing in classification accuracy. The resulting model, a) is able
to provide personalized solutions, tuned to each individual users
movement abilities, b) better adapts to unbalanced training data,
due to the generation of training samples from the existing
ones, ¢) performs an initial sampling of the training data, which
reduces requirements for computational resources and improves
the classification performance.

I. INTRODUCTION

Most of the approaches that use the terms movement classi-
fication or motion classification usually refer to the problem of
detecting body (e.g. standing, walking, lying etc) or face (e.g.
smile, sleep, sad etc) movements. However, there is another
set of approaches that associate movement classification to
the problem of detecting the type of a users movement, or
the means of transportation that he/she uses. Usually, such
applications, use GPS signal data and are driven by the interest
to predict the future position of the user e.g. in a cellular
network. The aim of our research is more generic, focuses
on the automatic detection of a users movement type in real
time, and is the first step of a larger project, which aims to
detect user habits in a larger time-scale.

The detection of user movement patterns is usually treated
as a classification problem ([1], [2]), where a classifier is
trained using a set of preclassified samples and a predefined set
of features (such as body parts movement, changes in speed,
altitude etc.). When a generic classifier is trained to classify a
users movement based on a set of predefined features, the result
is a generic model, which can hardly adapt to each individual
user ability (e.g. to the speed of walking, driving attitude etc)
or to temporal changes in the users movement habits. Our aim
is to develop personalised solutions for each user, so we must
train a different model for each user.

A prototype of GPSTracker for Android (versions 2.2 and newer) can
be downloaded from http://galaxy.hua.gr/~it20934/.

The advanced capabilities of mobile phones, allow us
to develop personalized solutions. However, there are still
performance limitations. In a previous work on movement
classification using mobile phones [3], we developed a pro-
totype application for collecting training data for different
types of user movement and consequently detecting future user
movement types. In that work, the pilot data were collected
using mobile phones, but a single movement classification
model was build off-line. The resulting classification model
was then loaded to the mobile device and used to detect the
movement type of any user in the future. In this work, we
extend this approach by adding the ability to train the classifier
on the mobile phone, using personalised user data.

In the prototype application, during training, the user
selects a type of movement and starts collecting data (gps
position, speed, altitude etc), thus resulting to a new (training)
annotated instance every 5 seconds. Changing to a different
movement type, the user informs the application and continues
to provide more training data.

The first problem of this approach is that the resulting
training dataset can be unbalanced, since the duration of
every user movement is not equal (e.g. he/she may drive
for 20 minutes, then park and walk to the metro station for
another 5 minutes and then move by metro for another 20
minutes. The second issue is the large number of training
instances that is collected in a few hours (moving around
during the day, say for 10 hours, results in 7200 instances).
Due to these issues, in our initial implementation we carefully
collected equi-balanced samples for all types of movement
and we consequently created the models off-line, in a desktop
computer. We subsequently trained a model by applying Weka
Random Forest algorithm and the model file was loaded to the
mobile device, together with the client application.

In this work, we use evolutionary algorithms, in order to re-
duce the number of samples required for training our classifier,
without loosing in classification accuracy. The resulting model,
a) is able to provide personalized solutions, tuned to each indi-
vidual users movement abilities, b) better adapts to unbalanced
training data, due to the generation of training samples from
the existing ones, c) performs an initial sampling of the training
data, which reduces requirements for computational resources
and improves the classification performance. Both the sample
selection process and the classification of future movement is
performed on the mobile device.

According to our knowledge, this is the first time that

varlamis
Text Box
IEEE Congress on Evolutionary Computation, May 25-28, 2015, at Sendai International Center, Sendai, Japan.

evolutionary algorithms for undersampling have been applied
to movement classification problems in order to reduce bias
from large dataset size and class imbalance. The use of such
algorithms in different classification problems [4] has shown
promising results, so we decided to evaluate their use in the
problem of user movement classification. The next section
provides an brief overview of research works in movement
classification and then focuses on the evolutionary algorithms
that can be applied to the undersampling problem. The details
of the algorithms that we evaluate are presented in the follow-
ing section and the results of our experiments are presented
in section V. The initial results of our research on the use
of Clonal Selection algorithms to the classification of user
movement are very encouraging, since they are better than
any other algorithm that we tested before, using the complete
set of training samples. Finally, section VI summarizes our
findings and provides insights for future improvements.

II. RELATED WORK

Most works that tackle the user movement classification
problem in indoor or outdoor environments, collect their
training samples using motion detectors and wearable sensors
that collect data from a limited set of actors. For example in
[5], authors use the EM algorithm for hidden Markov models
(HMM) in order to learn a movement model for a single person
and predict the persons outdoor location into the future. Hidden
Markov models and Bayesian inferences are applied in [6] and
[7] to predict indoor and outdoor movement respectively.

When the problem upscales to large groups of users, that
provide position information in real time then it becomes
harder and probably inneficeint to develop solutions that take
advantage of the full set of user-provided data. In our previous
study on user movement classification [3], we collected user
position information every few seconds and this resulted in a
few thousands of training instances in a few hours period. The
need for a dynamic model for user movement classification that
will be able to adapt to each individual user move abilities (e.g.
walking, running or biking speed, driving behaviour, public
transport in different traffic conditions etc) and in the same
time will make use of the most informative training samples.
Having this in mind, we decided to examine the effect of data
sampling in the performance of our classification algorithms.

Sampling techniques are frequently used to solve problems
concerning the distribution of a dataset, e.g. data skewing
or training set imbalance [8] and they involve artificially re-
sampling of the data set. Sampling can be achieved either by
Under-sampling the majority class, or by Oversampling the
minority class, or by combining both techniques. Undersam-
pling consists of reducing the data by eliminating examples
belonging to the majority class with the objective of equalizing
the number of examples of each class; and oversampling aims
to replicate or generate new positive examples in order to
gain importance. Apart from the traditional methods for under-
sampling (e.g. random sampling [9], stratified sampling [10]
etc) or over-sampling [11], which solve the imbalance problem
in the preprocessing phase, there exist hybrid methods that
combine both approaches and evaluate the effect of sampling
in the classification model performance. Evolutionary Under-
sampling [12] is a method that based on a fitness function,
selects the samples that optimise the classifier’s performance.

Regarding the selection of a proper sample, there are two
goals of interest in Evolutionary Undersampling according to
Garcia & Herrera [12].

e Models that aim for an optimal balancing of data
without loss of effectiveness in classification accuracy.
Such models adopt the so called Evolutionary Balanc-
ing Under-Sampling approach.

e Models that seek for an optimal power of classification
without taking into account the balancing of data,
considering the latter as a sub-objective that may be an
implicit process. Such models perform Evolutionary
Under-Sampling guided by Classification Measures.

With respect to the types of instance selection that can be
carried out in EUS, systems are distinguished:

e If the selection scheme proceeds over any kind of
instance, then it is called Global Selection (GS). That
is, the chromosome contains the state of all instances
belonging to the training data set and removals of
minority class instances (those belonging to positive
class) are allowed.

e If the selection scheme only proceeds over majority
class instances then it is called Majority Selection
(MS). In this case, the chromosome saves the state
of instances that belong to the negative class and a
removal of a positive or minority class instance is not
allowed.

According to evolutionary algorithms, the undersampling
process is considered as a process of training samples selection
from an imbalanced or very large training dataset. In order
to solve this problem, every possible subset of instances is
represented as a gene of size N, where N is the number of
samples in the initial dataset and each position of the gene
contains 1 if the respective training sample must be included in
the final training set or O if not. This representation [13], allows
the application of typical genetic algorithms’ operation, such as
mutation and crossover, without affecting the search space, and
needs a fitness function in order to reach an optimal solution.
The requirement from such a function is to select a solution
(i.e. a subset S of the total training instances V) that increases
the classification accuracy (accuracy) whilst increasing the
percentage reduction (reduc) of the training sample size. So a
general definition of the fitness of a chromosome which codes
the subset .S’ of training samples that will be used to build the
model can be:

fitness(S) = a - accuracy + (1 — a) - reduc (1

where « is a parameter that defines the importance of accuracy
achieved versus the percentage reduction of the size of the
training set and reduc is the percentage reduction defined as

[TR| -S|

reduc = 100 - TR]

©))

III. CLONAL SELECTION ALGORITHMS

Another interesting addition in the field of genetics inspired
algorithms for the classification via undersampling is the
family of Clonal Selection Algorithms which are inspired by

the immune systems [14] of live organisms and their response
to diseases of the body. The Clonal Selection Theory has been
introduced by Burnet [15] and Jerne, in order to describe the
functioning of acquired immunity, the ability of an organism
to defend itself to a disease via the diversity of antibodies
and the survival of those antibodies that better fit an antigen.
In biology the immune system has distributed control over
the body, operates in many parallel cases, and is adaptive to
the needs of the organism. All these features are desirable for
solving complex problems in the field of artificial intelligence
so such systems become an inspiration for Al community. The
clonal selection principle is used to explain the basic features
of an adaptive immune response to an antigenic stimulus.
According to this principle, only those cells that recognize
the antigens are selected to proliferate. The selected cells are
subject to an affinity maturation process, which improves their
affinity to the selective antigens.

According to the Clonal Selection Theory [16], in a pre-
existing group of lymphocytes (specifically B cells), a specific
antigen only activates (i.e. selection) its counter-specific cell so
that particular cell is induced to multiply (producing its clones)
for antibody production. Learning in the immune system in-
volves raising the relative population size and affinity of those
lymphocytes that have proven themselves to be valuable by
having recognized a given Ag. In analogy to classification with
undersampling, we seek to solve the problem using a minimal
amount of resources, so the samples that we select must be
the ones that when asked to give a prediction (classification)
will prove high affinity (i.e. prediction accuracy).

One of the most popular algorithms that implements the
clonal selection principle is CLON ALG [17], [18]. The steps
of the CLONALG algorithm with respect to the aforemen-
tioned Clonal Selection Theory can be summarized in the
following:

e maintenance of a specific memory set (i.e. training
subset)

e selection and cloning of the most stimulated samples
e removal of the nonstimulated training samples
e affinity maturation (by mutation), and

e reselection of the clones proportionally to their anti-
genic affinity, generation, and maintenance of diver-
sity.

The intuition of the algorithm is that instead of “starting from
scratch” every time, we will be able to remove training samples
of low affinity, and multiply those with high affinity in each
iteration. Such a strategy ensures that both the speed and
accuracy of the immune response becomes successively higher
after each infection. This is a reinforcement learning strategy
[19], where the interaction with the environment gives rise
to the continuous improvement of the system capability to
perform a given task.

Clonal selection algorithms have been proposed for pattern
recognition but not been applied to classification problems
[17], [20]. Recently, there are few classification algorithms
derived from the concept of Artificial Immune Systems like
CLONAX [4], AIRS [21] and Immunos [22], which are
providing promising results for many engineering problems.

In this work, we compare two algorithms that implement the
Clonal Selection principle, namely CLONCLAS and CSCA.
More specifically, we use the implementation of the algorithms
for Weka data mining suite?, provided by Jason Brownlee 3
and described in details in his technical report [23].

A. CLONALG and CLONCLAS

The main aspect of CLONALG algorithm is to develop
a memory pool of antibodies that represents a solution to an
engineering problem. In this case, an antibody represents an
element of a solution or a single solution to the problem, and
an antigen represents an element or evaluation of the problem
space. The algorithm provides two mechanisms for searching
for the desired final pool of memory antibodies. The first is a
local search provided via affinity maturation (hypermutation)
of cloned antibodies. More clones are produced for antibodies
with higher affinity, though the scope of the local search is
inversely proportional to the selected antibodies rank. This
allows antibodies with low specificity with the antigen, a wider
area in the domain which to maturate. The second search
mechanism provides a global scope and involves the insertion
of randomly generated antibodies into the population to further
increase the diversity and provide a means for potentially
escaping local optima.

Overall, the implementation of CLONALG for classi-
fication, namely the CLONECLAS algorithm process the
training sample as follows:

e In the initialization step the training dataset of size N
(antibodies) is randomly partitioned into two subsets:
the memory samples subset m and the remaining
samples subset . Each antibody in the memory subset
is allocated a class, thus allowing it to perform clas-
sification by assigning its class to an antigen. When
an unseen antigen is exposed to the population, it is
allocated the class of the antibody with the highest
affinity to the antigen.

1) In a sequence of steps that are repeated for
a predefined number of loops or until a con-
vergence criterion is met, each antibody (i.e.
training sample in subset m) is evaluated
against a randomly selected antigen (i.e. a
training sample, which is treated as unknown).

2) The antibodies (training samples) are evalu-
ated for their affinity (their ability to properly
classify the antigen) and ranked based on their
affinity score.

3) The best training samples are selected for
cloning (i.e. selected to be copied to the
training sample after mutation) in proportion
to their affinity, whereas the worst ones are
removed from the training sample.

4) During the Affinity Maturation step (i.e. muta-
tion) the clones are mutated inversely propor-
tional to their affinity. Clones of high affinity
score are mutated less than clones of lower
affinity score.

2http://www.cs.waikato.ac.nz/ml/weka/
3http://wekaclassalgos.sourceforge.net/

e After the completion of all generations, the memory
m component contains the most promising training
samples and their variations. This will be the final
training set for the algorithm. Classification of unseen
examples will consequently be performed using an
affinity-competitive environment, and could even be
implemented using a majority vote k-Nearest Neigh-
bour approach.

B. Clonal Selection Classification algorithm (CSCA)

One of the limitations of CLONCLAS variation of
CLON ALG was that it was designed for binary character pat-
tern recognition problems domain. CLONCLAS described
the need for generalisation through treating each antibody as
an exemplar and maintained one antibody per-class, which is
not practical for most classification problems. CLONCLAS
used an affinity threshold which is an additional parameter
to be specified. However, the threshold can be easily achieved
naturally using a competitive population of antibodies.

The aim of ClonalSelectionClassificationAlgorithm
was to tackle the inefficiencies of CLONCLAS and optimize
the classification performance. For this reason, it used the
principles of Clonal Selection in order to tackle the classi-
fication problem, and redefined the generic steps of the Clonal
Selection Theory.

First of all, since supervised classification is a learning pro-
cess where training samples are use to build the classification
model, the CSCA algorithm starts with partitioning the training
dataset into segments and uses all the samples in a single
segment as evaluation samples £ (antigens) and the remaining
samples as training 7" (antibodies). This is a random selection
that take place in the initialization step. Classification of an
evaluation sample (antigen) is done using the majority class of
its k-Nearest Neighbours, defined by Euclidian or Hamming
distance.

Both antibodies and antigens belong to classes so the
affinity of an antibody, which belongs to a specific class, is
defined as its ability to correctly classify antigens of the same
class (True Positives) and avoid misclassification of antigens
of other classes to its class (False Positives) or antigens of
its class to other classes (False Negatives). As a consequence
a definition of the affinity score of an antibody (or a set of
antibodies), used as training samples in an iteration of the
algorithm will be either the accuracy (or average accuracy)
or a function similar to the following:

TP+TN

Based on the calculated fitness score, training samples
are filtered and either removed from the set or selected for
clonining and maturation according to the following simple
rules :

1) The training samples with zero True Positives for
their selected class and more than zero False Neg-
atives for another class are switched to the class with
most FN hits, or the first class indeed in the case of
a tie and their fitness is recalculated.

2) Samples with a zero misclassification score are also
removed from the population.

3) Training samples of low fitness (lower than a thresh-
old value ¢) are removed from the population and do
not participate in cloning and maturation.

In the cloning step the number of clones for an antibody
is analogous to its fitness (it is essentially its fitness ratio in
the population) and defined by the following equation:

Fitness(ab)
> icg Fitness(i)

where n is the number of antigens and « is an optional scale
factor.

“(n-a))

numClones(ab) =

In the mutation step, new attribute values are calculated for
each selected antibody. The new value for numeric attributes is
a random number in a range around the existing attribute value,
whereas the range is inversely proportional to the antibody
fitness ratio. The new value for nominal attributes are randomly
selected.

The initial population size .S, the number of generations G,
the attribute value bounds and a random number seed r are the
required paremeters of C.SC' A, whereas the minimum fitness
threshold e, the clonal scale factor o, the number of partitions
p for large sets and the number of neighbours k are optional
parameters that all default to 1.

IV. USER MOVEMENT CLASSIFICATION

In a previous work [3] we presented a prototype appli-
cation, which demonstrated the use of mobile phones for
collecting user activity information. The aim of GPSTracker
prototype is to record and detect the daily routine of the
user. Its architecture (shown in Figure 1) is based on four
components, which implement data recording, classification of
movement, visualisation of user tracks and data storage in the
cloud respectively.

<<component>> [&]
‘GPSTracker Application

<<component>>]
Location Service

<<gomponent>> H]
‘GPSTracker Service <- 18

<<component>> g
‘WEKA API

<<component>> g

A
i
H
|
i ClassificationActivity

i
H I

<<gomponent>> H] <<component>> @] 3
Google Maps <-|-|Google Maps Activity |__________|
Android API
<<component>>] <<component>> &]
Dropbox Activity Dropbox API
Fig. 1. The architecture of GPSTracker.

While extending the set of features employed for movement
classification, we put effort in improving the classification
results and in the same time in increasing the generalization
performance of our solution. So, we first extended the set of
features that we employ, by adding geospatial information for
public transportation stops and routes as well as parks and
stadiums. The complete set of features that we currently work
on are presented in Table II. The attributes with blue color, are
the new attributes for this work.

TABLE 1. FEATURES
Basic Derived
Longitude Average speed
Latitude Smoothed average speed
Near Metro Station
Inside a polygon (park, stadium etc.)
On bus line
On metro line
Altitude Altitude change
Timestamp Time zone
Day of the week
Hour of day
Is working day
GPS Signal status -

TABLE II INITIAL SET OF FEATURES RANKED BY INFORMATION
GAIN

InformationGain Feature
2.3864 Timestamp
1.5827 Longitude
1.3724 Latitude
0.809 Average Speed
0.3756 GPS Signal Status
0.3584 Smoothed average speed
0.2995 Altitude
0.2777 Day of week
0.0252 Is working day

0 Time zone

A. Feature Selection

The first step in our analysis is to measure the contribution
of each feature to the accuracy of the classification model.
Using In formationGain as a metric for evaluating attributes,
we rank the attributes as follows:

Although Timestamp, Longitude and Latitude features (first
zone features) show an increased value of Information Gain,
they are in essence limiting the generalization power of our
model, since they rely on very specific information, which
can easily be biased for the training sample and lead to over
fitting. So we decide to remove these attributes and build a
classification model without them. We also build a second
classification model that employs the newly added geolocation
based attributes.

B. Unbalanced training set and under-sampling

A second observation from our initial work, was that the
number of training instances that we collected was large, but
imbalanced as shown in Table III.

In order to tackle this issue, we examine in this work
the use of Clonal Selection algorithms in our multi-class
classification problem. In the following section, we present
our experimental evaluation methodology, which compares the
performance of our currently best algorithm, with that of
Clonal Selection algorithms with and without the additional

TABLE III. CLASS DISTRIBUTION OF THE TRAINING SAMPLES

[Attribute [Number of training samples [Ratio of training samples]
Walking 770 17%
Running 177 4%
Biking 343 8%
Driving 650 14%
Metro 1256 28%
Bus 534 12%
Motionless 788 17%

features. The results justify the initial thought, that Evolution-
ary methods can be applied to the problem of user movement
classification with under-sampling. The resulting accuracy is
improved and the number of training samples employed is
significantly reduced.

V. EVALUATION

The dataset of reference to our work, is a sample of 4518
instances distributed across the different movement types (see
Table III above). The classification of every recorded instance
is performed using algorithms available by the Weka API
and the best results were recorded by the implementation of
the Random Forests algorithm [24]. Random forests are an
ensemble learning method for classification that operate by
constructing a multitude of decision trees at training time and
outputting the class that is the mode of the classes output by
individual trees. Random Forests algorithm outperformed all
other tree-based classifiers that we tested such as C4.5 [25]
and REP Tree, and the Logistic Model Tree (LMT) [26], [27].

A. Without location and time restricting features

In a first experiment, we removed the three location and
time-specific attributes and run the same tree based classifica-
tion algorithms, some more algorithms such as SVMs, Neural
Networks and k-NN and two clonal selection algorithms
CLONALG and CSCA. All algorithms were tested using
the default parameter settings. Concerning the parameters of
CSCA, the default number of neighbours was used (1-NN)
and the initial population size, selected to be 50. This resulted
to a few more than 300 antibodies, which corresponds to
a reduction rate of 90%. We also tested C'SCA with an
initial population size of 500 and 1000, which result in a
87% training dataset reduction rate. Finally, we experimented
with the minimum fitness threshold e parameter and the clonal
scale factor . The minimum fitness threshold affects the data
reduction percentage, since a lower fitness threshold results in
the selection of more antibodies. The clonal scale factor affects
the mutation of antibodies since a higher clonal scale factor
results in bigger changes in the attribute values. The results
with different ¢ and « values were almost similar to that of
using the default values. The accuracy results when using 10-
fold cross-validation on the entire data set are reported in Table
Iv.

TABLE IV. ACCURACY IN THE TRAINING DATASET USING 10-FOLD
CROSS VALIDATION (7 FEATURES)
[Algorithm [Accuracy]

Random Forests 62.79+1.85
C4.5 66.82+1.8

REP Tree 65.524+1.82
LMT 66.401+1.81

1-NN 62.4441.86

SVM 58.611+1.89
SMO 47.67+1.91
Multilayer Perceptron 55.33+1.91
CLONALG 23.824+1.63
CLON ALG1000 58.5941.89
CSCAs =50 63.15 £1.85
CSCA | s|—s00 65.45 £1.82
CSCA|s|—1000 65.78+£1.82

The results presented in Table IV differ from the results that
we reported in our initial work, where all features of Table II

0,5

0,45

(=)
o w o
w a >

—e -Training (C4.5)

Error Rate

0,25 =
e —e— T — o — T = _e-Test(C4.5)
0,2 Training (CSCA)
0,15 ——Test (CSCA)
0,1
0,05
0
0% 20% 40% 60% 80% 100%

Percentage of training examples used

Fig. 2. Learning curves for C4.5 and CSCA, using an increasing number of
training samples and 7 features.

were used and the Random Forest algorithm outpeformed all
other algorithms with an accuracy higher than 90%. Accuracy
scores are lower, which validates our first thought that the
initial model will probably not generalize well and justifies
the need for pruning the three attributes. A further examination
of the results shows that C'SC A’s performance is comparable
to the best achieved performance by C4.5 with a confidence
interval of 99%.

In order to evaluate the generalization performance of our
model and make sure that we avoid over-fitting, we draw the
learning curves of our best models using a holdout set, which
we created by performing stratified sampling to the full dataset.
The holdout (testing) dataset contains 20% of the full dataset
instances and the remaining 80% was used for training. The
error rate for the testing and training sets using an increasing
number of training samples is depicted in Figure 2.

From the learning curves it is obvious that the classification
model does not generalizes well in the case of C4.5. Although
overall there is a decrease in the error rate on the held-
out set when the training sample size increases, there are
cases where the error rate increases or remains stable. On the
contrary, C'SC' A seems to generalize better, since the error rate
decreases at all times, when the training set size increases, and
this also signifies that we can use additional training samples in
order to perform a better under-sampling before classification.
Another explanation of the results, is that the error rate, both
in training and held-out data is still large, so we must use
additional features in order to improve classification. In this
direction is the second experiment that follows.

B. Using derived geo-location information features

In this second experiment we repeat all the evaluations
we performed in the previous experiment, this time using the
additional attributes that have been derived by processing the
user location information and transportation and park related
information. The motivation behind this experiment was that
in the initial evaluation dataset we noticed an imbalance on the
accuracy provided for different classes. In order to have a better
understanding of what mislead our classifier, we performed an

error analysis on the holdout samples. The confusion matrix
depicted in Table V shows that the confusion was mainly
among Walking and Bus and Driving classes. This can be
easily explained since the buses frequently stop, and similarly
people occasionally stop during their walks (e.g. in traffic
lights).

TABLE V. CONFUSION MATRIX OF THE TEST DATA SET.
[a [b [c[dJ] e [Tf] g «classifiedas |
95 10 6 13 6 15 9 a = Walking
6 22 3 1 0 1 1 b = Running
7 0 52 1 1 4 6 ¢ = Biking
18 7 0 67 15 16 7 d = Driving
11 2 1 12 200 4 20 e = Metro
7 5 8 12 4 67 4 f = Bus
14 2 4 4 45 5 84 g = Motionless

First we repeat 10-fold cross-validation on the entire data
set and report the results in Table VI. Once again, C4.5 demon-
strates the best performance among the evaluated algorithms
of the first two zones (tree based and others).

TABLE VI ACCURACY IN THE TRAINING DATASET USING 10-FOLD
CROSS VALIDATION (10 FEATURES)
[Algorithm [Accuracy]
Random Forests 65.801+1.82
C4.5 69.79+1.76
REP Tree 67.13£1.8
LMT 69.104+1.77
I-NN 65.01+1.83
SVM 62.331+1.86
SMO 50.754+1.92
Multilayer Perceptron | 58.88+1.89
CLONALG 21.744+1.58
CLON ALG1000 62.73+1.85
CSCA|s|=50 63.97E1.84
CSCA|s|—s00 66.89E1.8
CSCA|s—1000 69.97£1.79

As far as it concerns the Clonal Selection Algorithms, the
results are better than using fewer attributes, and slightly better
to those of C4.5 (see Figure 3).

Another thing that validates the belief that the new at-
tributes improve the classification performance is their ranking
using Information Gain as depicted in Table VII. The feature
that checks whether the user moves on a bus line is highly
informative. The other two features (i.e. “On metro line” and
“Inside a polygon”) are not very helpful, at least in the current
validation dataset.

The last thing to check is whether we have overfitting in our
best two algorithms. As before, we plot the results of C4.5 and
CSCA in the training and evaluation datasets for an increasing

TABLE VII. EXTENDED SET OF FEATURES RANKED BY INFORMATION
GAIN

InformationGain Feature
0.5495 Hour of day
0.1570 Average Speed
0.0992 On bus line
0.0960 Day of week
0.0929 Altitude
0.0778 Smoothed average speed
0.0090 Is working day
0.0056 GPS Signal Status
0.0046 On metro line
0.0044 Inside a polygon

Accuracy in training data (10-fold cross validation with 10 features)

Fig. 3. Comparison of different algorithms using accuracy in the training
dataset and 10-fold cross validation with 10 features.

number of training samples. The results are depicted in Figure
4.

0,6
0,55
0,5
g
—e -Training (C4.5
<045 €(C4.5)
o —e—Test (C4.5)
w Training (CSCA)
04 ——Test (CSCA)
0,35
0,3
0% 20% 40% 60% 80% 100%

Percentage of training examples used

Fig. 4. Learning curves for C4.5 and CSCA, using an increasing number of
training samples and 10 features.

Overall, the results in the evaluation dataset are comparable
to those in the training dataset. However, the results of C4.5
do not demonstrate over fitting, except for the last two points
of the held out data plot (i.e. for training samples larger than
80% of the available training dataset), for which the error rate
in unknown samples increases. In the case of CSCA there is no
over fitting and there is probably space for more improvement,
if more features are employed.

VI. CONCLUSION

In this work, we presented an application of Clonal Se-
lection algorithms to the problem of user movement type
detection. The problem is a multi-class classification problem
that requires personalised models to be build for each indi-
vidual user, in order to be adaptable to the user’s moving
abilities and habits. The models must be trained using an
equal number of training instances for each class and in
case of a large training data size, a proper sampling must be

performed. The application of CSCA and CLONALG to our
problem shows that Clonal Selection algorithms can achieve
comparable results to other supervised learning techniques,
which are applied to the whole training dataset.

After the successful testing of CSCA in the sample exper-
imental data, it is on our intention to adapt the existing im-
plementation for Weka, to the environment of a mobile device
and test it in real conditions, thus creating personalised classi-
fication models for the users of our GPSTracker application.
We currently work on adding more features concerning user
activity, by taking advantage of more sensors provided by the
mobile device and by adding more geo-location information
(e.g. information about malls, pedestrian areas, etc.), so we
expect to further improve the classification accuracy.

ACKNOWLEDGMENT

The author would like to thank Spyridoula Tragopoulou
and Ivan Tarbakou for their contribution to the implementation
of various aspects of the GPSTracker application, as well as
for their assistance in the collection of training and evaluation
data.

REFERENCES

[1] FE Sparacino, “The museum wearable: Real-time sensor-driven un-
derstanding of visitors’ interests for personalized visually-augmented
museum experiences.” 2002.

[2] N. Bu, M. Okamoto, and T. Tsuji, “A hybrid motion classification
approach for emg-based human-robot interfaces using bayesian and
neural networks,” Robotics, IEEE Transactions on, vol. 25, no. 3, pp.
502-511, 2009.

[3] S. Tragopoulou, I. Varlamis, and M. Eirinaki, “Classification of move-
ment data concerning users activity recognition via mobile phones,” in
Proceedings of the 4th International Conference on Web Intelligence,
Mining and Semantics (WIMS14). ACM, 2014, p. 42.

[4] A. Sharma and D. Sharma, “Clonal selection algorithm for classifica-
tion,” in Artificial Immune Systems. Springer, 2011, pp. 361-370.

[5] D. J. Patterson, L. Liao, D. Fox, and H. Kautz, “Inferring high-
level behavior from low-level sensors,” in UbiComp 2003: Ubiquitous
Computing. Springer, 2003, pp. 73-89.

[6] . Petzold, A. Pietzowski, F. Bagci, W. Trumler, and T. Ungerer, ‘“Pre-
diction of indoor movements using bayesian networks,” in Location-and
Context-Awareness. ~ Springer, 2005, pp. 211-222.

[71 D. Ashbrook and T. Starner, “Using gps to learn significant locations
and predict movement across multiple users,” Personal and Ubiquitous
Computing, vol. 7, no. 5, pp. 275-286, 2003.

[8] N. V. Chawla, “Data mining for imbalanced datasets: An overview,” in
Data mining and knowledge discovery handbook. Springer, 2005, pp.
853-867.

[9] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou, “On the class
imbalance problem,” in Natural Computation, 2008. ICNC’08. Fourth
International Conference on, vol. 4. 1EEE, 2008, pp. 192-201.

[10] J. Neyman, “On the two different aspects of the representative method:
the method of stratified sampling and the method of purposive selec-
tion,” Journal of the Royal Statistical Society, pp. 558625, 1934.

[11] A. Liu, J. Ghosh, and C. E. Martin, “Generative oversampling for
mining imbalanced datasets.” in DMIN, 2007, pp. 66-72.

[12] S. Garcia and F. Herrera, “Evolutionary undersampling for classifica-
tion with imbalanced datasets: Proposals and taxonomy,” Evolutionary
Computation, vol. 17, no. 3, pp. 275-306, 2009.

[13] L. L. Kuncheva and J. C. Bezdek, “Nearest prototype classification:
clustering, genetic algorithms, or random search?” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
vol. 28, no. 1, pp. 160-164, 1998.

[14] L. N. De Castro and J. Timmis, Artificial immune systems: a new
computational intelligence approach. Springer, 2002.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

F. M. Burnet, “A modification of jerne’s theory of antibody production
using the concept of clonal selection,” CA: A Cancer Journal for
Clinicians, vol. 26, no. 2, pp. 119-121, 1976. [Online]. Available:
http://dx.doi.org/10.3322/canjclin.26.2.119

P. D. Hodgkin, W. R. Heath, and A. G. Baxter, “The clonal selection
theory: 50 years since the revolution,” Nature immunology, vol. 8,
no. 10, pp. 1019-1026, 2007.

L. N. De Castro and F. J. Von Zuben, “Learning and optimization
using the clonal selection principle,” Evolutionary Computation, IEEE
Transactions on, vol. 6, no. 3, pp. 239-251, 2002.

——, “The clonal selection algorithm with engineering applications,”
Proceedings of GECCO, vol. 2000, pp. 36-39, 2000.

A. G. Barto, Reinforcement learning: An introduction. ~MIT press,
1998.

J. A. White and S. M. Garrett, “Improved pattern recognition with
artificial clonal selection?” in Artificial Immune Systems. Springer,
2003, pp. 181-193.

A. Watkins, J. Timmis, and L. Boggess, “Artificial immune recognition
system (airs): An immune-inspired supervised learning algorithm,”
Genetic Programming and Evolvable Machines, vol. 5, no. 3, pp. 291—
317, 2004.

J. H. Carter, “The immune system as a model for pattern recognition
and classification,” Journal of the American Medical Informatics Asso-
ciation, vol. 7, no. 1, p. 29, 2000.

J. Brownlee, “Clonal selection theory & clonalg—the clonal selection

classification algorithm (csca),” Swinburne University of Technology,
2005.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, Oct. 2001. [Online]. Available: http://dx.doi.org/10.1023/A:
1010933404324

R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Machine
Learning, vol. 95, no. 1-2, pp. 161-205, 2005.

M. Sumner, E. Frank, and M. Hall, “Speeding up logistic model tree
induction,” in 9th European Conference on Principles and Practice of
Knowledge Discovery in Databases. Springer, 2005, pp. 675-683.

