

Pythia

Employing Lexical and Semantic Features for Sentiment Analysis

Ioannis Katakis	Harokopio University of Athens imktks@gmail.com
Iraklis Varlamis	Harokopio University of Athens varlamis@hua.gr
George Tsatsaronis	Technical University Dresden george.tsatsaronis@biotec.tu-dresden.de
Presented by: Alina Petrova	Technical University Dresden alina.petrova@gmail.com

What is Pythia ?

Pythia is an online service for sentiment analysis and word sense disambiguation. It performs:

- Word sense disambiguation using popular WSD techniques
- Sense-level sentiment analysis using SentiWordNet
- Sentence-level sentiment analysis using different classification models

Contribution

- Web Service that performs sentiment analysis and word sense disambiguation
 - Different combinations of WSD methods and feature sets for sentiment classification
- REST API for using the service via HTTP requests
- Graphical interface GUI for easier interaction with the service
 - http://omiotis.hua.gr/pythia

Architecture

Architecture - Syntactic Parser

Architecture - Word sense disambiguation

Architecture - Sense level sentiment analysis

Architecture - Sentence level sentiment analysis

Architecture - API

Architecture - GUI

Tools and resources

- Back-end
 - WordNet
 - Stanford Parser
 - SentiWordNet
- Front-end
 - Java Jersey Framework
 - HTML
 - JavaScript jQuery, Chart, rangy, Trip, jQueryslimScroll, iCheck
 - -CSS

Pythia's Back-end

- WSD methods:
 - First Sense (FS)
 - Weighted Degree (WDEG)
 - Integer Linear Programming (ILP)
- Classifiers:
 - Support Vector Machines (SVM)
 - Logistic Regression
 - Naive Bayes

WSD Methods

• First Sense (FS)

the most popular sense for each word according to WordNet

- Weighted Degree (WDEG) algorithm which computes the weighted sum of the edges for each node
- Integer Linear Programming (ILP) method that addresses the problem of word-sense disambiguation as a linear programming problem (maximization of pairwise sense similarity)
 - Panagiotopoulou, V., Varlamis, I., Androutsopoulos, I., & Tsatsaronis, G. (2012). Word sense disambiguation as an integer linear programming problem. In Artificial Intelligence: Theories and Applications (pp. 33-40). Springer Berlin Heidelberg.

Sentence sentiment classification

Classification on a movie reviews dataset using:

- 3 classifiers:
 - SVM
 - Logistic Regression
 - Naive Bayes
- 5 set of features:
 - Semantic features (4)
 - Char n-grams (11,923)
 - Term n-grams (214,342)
 - All n-grams (225,475)
 - All Features (225,515)

Pythia's Front-end

- API (omiotis.hua.gr/pythia/api.html)
 REST
 - HTTP GET and POST requests
 - Different endpoints for each word sense disambiguation method
 - Response data in JSON format
- Demo GUI (omiotis.hua.gr/pythia)
 - User friendly interface based on JavaScript that exposes the service capabilities
 - How-to-use animation clip for easier customization of the service

Evaluation

- The evaluation was performed on the movie reviews dataset (Pang & Lee 2005) as employed by Socher et al 2013
- Our best sentence-level sentiment analysis model achieved accuracy up to **80.73%**

ML	Semantic	Char <i>n</i> -grams	Term <i>n</i> -grams	All <i>n</i> -grams	All Features
	Features (40)	(11, 923)	$(214,\!342)$	$(225,\!475)$	(225, 515)
SVM	68.26	73.35	80.11	79.01	80.04
Log. Regression	68.43	69.07	77.31	78.65	79.01
Naive Bayes	64.66	75.35	74.32	79.81	80.73

• The combination of all features, semantic and lexical, leads to the best results.

Conclusion

- Pythia is a flexible system consisting of individual subsystems
- It has the ability to employ different components in order to achieve better performance
- Its different components may affect negatively the overall performance of the system

Demo time...

omiotis.hua.gr/pythia

Thank you!