Classification of movement data and user's activity recognition via mobile phones

> **Spyridoula Tragopoulou** Harokopio University of Athens **Magdalini Eirinaki** San Jose State University

Iraklis Varlamis

Harokopio University of Athens varlamis@hua.gr

Contents

- The idea
- Related applications
- Architecture
- Implementation
- Experiments
- Conclusions and future work

THE IDEA

Motivation

MIT Technology Review

10 BREAKTHROUGH TECHNOLOGIES 2013

З

THE IDEA

The challenge

- Collect user activity information with a smart-phone
 Position, speed, altitude and time information
- Analyze collected data using the smart-phone
 - Real-time classification of user's movement
- Visualize user trail
- Store user information in a data repository for future usage
 - Extract habits and make recommendations

GPSTracker

Android Application

http://galaxy.hua.gr/~it20934/

COMPARISON

WIMS 2014 - 2/6/2014 GPSTracker

Related Applications

MyTracks

RunKeeper

COMPARISON

Features

Application	Motion Classification	Show on map	Biosignals
MyTracks	No	Yes	Yes
RunKeeper	No	Yes	Yes
GPSTracker	Yes	Yes	No

APPLICATION ARCHITECTURE

GPSTracker Architecture

WIMS 2014 - Thessaloniki 20GPSTPacker

Data Recording

- Android Service running in background
- Features
 - Longitude, Latitude, Average speed, Smoothed average speed, Near Metro Station, Altitude, Altitude change, Timestamp, Time zone, Day of the week, GPS Signal status
- An instance (*movement*) every 30 sec

Movement Classification

- Recognize the type of each user movement
- Movement Types: Walking, Running, Biking, Driving, Metro, Bus, Motionless
- Collect training data for every type
- Build a *classification model*
- Store the model in the device
- Classify every new movement instance

Training Data Collection

Classification algorithm

- Weka API for Android https://github.com/rjmarsan/Weka-for-Android
- Tree-based classifiers
 - Fast predictions on mobile devices
 - Light model
 - Good performance
- RandomForests had the best performance

Real-time Trail Visualization

Google Maps API for Android

Visualization of stored trails

Repository of user trails

- Upload user files to an online data repository
- Use Dropbox API so that data are stored in a private repository for each user

WIMS 2014 - Thessaloniki 20GPSTFacker

EXPERIMENTS

Training Dataset

- 4518 training samples
- 10-fold cross validation on the training data
- Tree-based classifiers
- RandomForests had the best performance (92.81±0.99 at 99% confidence level)
- Confident model for movement predictions

Movement Type	Number of training samples			
Walking	770			
Running	177			
Biking	343			
Driving	650			
Metro	1256			
Bus	534			
Motionless	788			
Algorithn	n Accuracy (%	Accuracy (%)		
J48	90.73	90.73		
LMT	85.79	85.79		
RandomFore	ests 92.81	92.81		
REPTree	87.61	87.61		
RandomTre	e 91.05	91.05		

EXPERIMENTS

Learning Curves - Random Forests

2/6/2014

CONCLUSIONS

Future Work

- Extension of the set of features for motion classification
- Long term analysis of user information
- Post-processing of movement data from multiple users
 - using a shared data repository (and users' consent)
 - extract significant places and user habits
- Geospatial extension of SQLite RDBMS including public transportation stops and routes, parks, malls and shopping areas
- Personalized notification system

Thank you for your attention?

Questions?

Accuracy on test data

Algorithm	Accuracy %	Accuracy % (no speed smoothing)
J48	89.12	88.43
LMT	80.47	84.33
RandomForests	92.14	92.00
REPTree	86.55	86.71

Confusion matrix on test data

a	b	С	d	е	f	g	<-classified as
135	2	0	2	2	2	11	a = Walking
1	32	0	0	0	0	1	$\mathbf{b} = \mathbf{Running}$
1	0	70	0	0	0	0	c = Biking
1	0	0	127	1	0	1	d = Driving
4	0	0	0	243	2	1	e = Metro
12	0	0	0	1	93	1	f = Bus
12	1	0	1	4	1	139	g = Motionless