Temporal Classifiers for Predicting the Expansion of Medical Subject Headings

George Tsatsaronis

Biotechnology Center, Technische Universität Dresden, Germany george.tsatsaronis@biotec.tu-dresden.de

Iraklis Varlamis

Department of Informatics and Telematics, Harokopio University of Athens, Greece varlamis@hua.gr

Nattiya Kanhabua

L3S Research Center, Leibniz Universität Hannover, Germany

kanhabua@l3s.de

Kjetil Nørvåg

Department of Computer and Information Science, Norwegian University of Science and Technology, Norway Kjetil.Norvag@idi.ntnu.no

Annotation of biomedical data

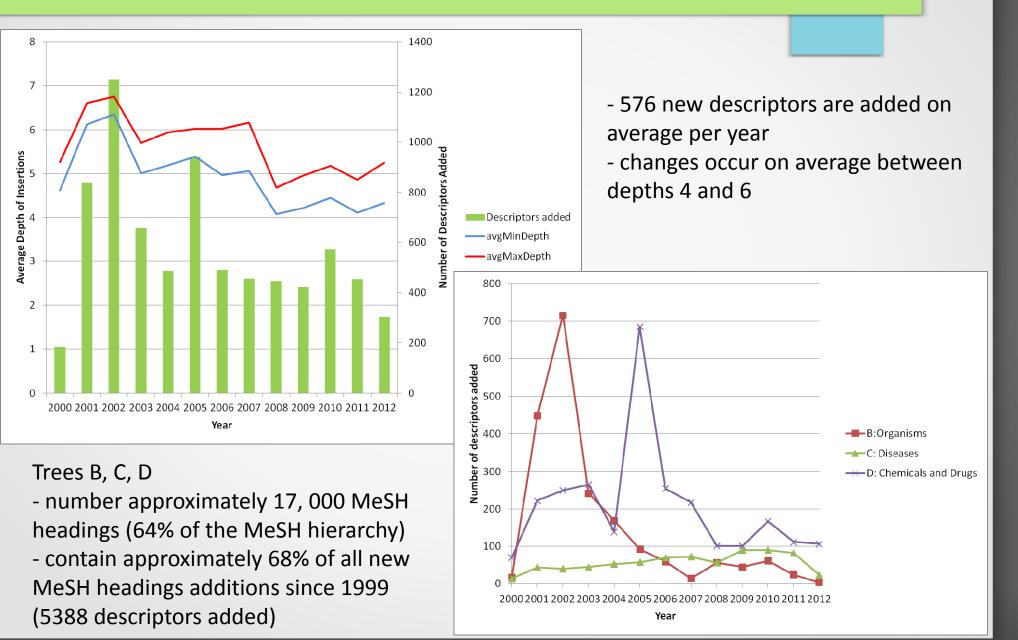
- . The amount of biomedical data increases exponentially
 - Scientific articles, nucleotide sequences, protein structures
- Ontology based annotation of data facilitates information indexing and retrieval
 - PubMed uses Medical Subject Headings (MeSH) to annotate Medline articles
 - GoPubMed uses Gene Ontology (GO) and UniProt resources
- Automatic annotation with ontology terms facilitates indexing
- ... but who maintains the ontology?

Ontology evolution

 Biomedical literature introduces new terms, which should be incorporated to the ontology

Open questions in ontology evolution

-Which terms to include in the ontology?

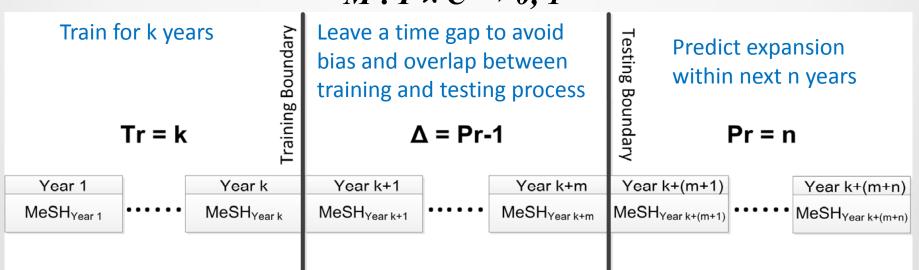

-Where to place this terms?

We present a methodology for updating MeSH hierarchy
We predict which MeSH headings may be expanded in the near future

Medical Subject Headings (MeSH)

- Hierarchy of terms maintained by the United States National Library of Medicine
- MeSH includes three types of data:
 - descriptors (subject headings): 26,853 terms in 16 trees,
 - qualifiers (subheadings): 80 terms that narrow the descriptors' topics
 - supplementary concept records: 214,000 terms that mainly describe chemical substances and are linked to the respective descriptors
- Our classifiers use both static and temporal features of the descriptors to predict which of them will be expanded in the forthcoming MeSH releases

MeSH statistics



Related projects

- Predict the extension of the Gene Ontology (Pesquita and Couto, 2012)
 - predict areas of GO that will undergo extension in a future version
 - structural, annotation, citation and hybrid features are employed
 - only the latest version of the ontology is employed
 - Our method all the previous versions of the ontology to define temporal features
- DOG4DAG: automated sibling generation for MeSH terms (Fabian, Wächter and Schroeder, 2011)
 - Siblings are extracted from the terms' context.
 - Simple co-occurrence and textual patterns (A such as B, C, D) are employed
 - our method can be used to find the terms that will be expanded

MeSH expansion as a classification problem

- *I* is a MeSH descriptor
- We compute the values of all features of *I* up to year *t* using all MeSH snapshots from 1999 to *t*: $I_t = [X_1, ..., X_N]$.
- If I is to be expanded in the next n years then C=1, else C=0

 $M: I \times C \rightarrow 0, 1$

CICLING 2013 Temporal Classifiers for Predicting the Expansion of Medical Subject Headings

Features

Category	Feature	Name	Description
	X_1	minDepth	Minimum depth <i>I</i> appears
	X_2	maxDepth	Maximum depth <i>I</i> appears
Structural	X_3	siblings	# $MeSH$ heading siblings to I
	X_4	direct children	# MeSH heading direct children of I
	X_5	all children	# MeSH heading descendants of I
	X_6	PubMed results	# $PubMed$ results with I as query
Citation	X_7	direct children results	# $PubMed$ results with I's children as query
	X_8	all children results	# $PubMed$ results with I 's descendants as query
	X_9	PubMed annotations	# major/minor <i>PubMed</i> annotations with <i>I</i>
Annotation	X_{10}	direct children annotations	# major/minor <i>PubMed</i> annotations with <i>I</i> 's children
	X_{11}	all children annotations	# major/minor PubMed annotations with I's descendants
	X_{12}	annRatioAll	all children annotations all children
	X_{13}	annRatioDir	direct children annotations
Hybrid	X_{14}	resRatioAll	direct children all children results all children
	X_{15}	resRatioDir	direct children results
	X_{16}	annRatioResults	PubMed annotations PubMed Results
Temporal	X_i'	temporal X_i	$\frac{X_{i,y_n} - X_{i,y_{n-1}}}{X_{i,y_n}}$

CICLING 2013 Temporal Classifiers for Predicting the Expansion of Medical Subject Headings

Experimental setup

- Ontology: We are using all the MeSH releases from 1999 until 2011 (inclusive)
- Corpus: 22 million articles indexed in PubMed until 31/12/2011
- Indexed in Lucene: titles, abstracts, years, MeSH major and minor annotations of all articles in the corpus; all MeSH releases
- Classifier: cost sensitive classification (MetaCost classifier with pre-constructed cost matrices) on-top of Random Forests (in Weka)
- Different classifiers for different MeSH trees

Instance files

We create 12 Weka files (1/y) for each MeSH tree and then merge instances

Tr	$PR = 1(\Delta = 0)$	$PR=2(\Delta=1)$	$PR = 3(\Delta = 2)$	$PR = 4(\Delta = 3)$	$PR = 5(\Delta = 4)$	$PR = 6(\Delta = 5)$
1	11	9	7	5	3	1
2	10	8	6	4	2	—
3	9	7	5	3	1	_
4	8	<mark>∧</mark> ⁶	4	2	—	_
5	7	5	3	1	_	_
6	6	4	2	—	—	_
7	5	3	1	—	—	_
8	4	2	_	—	—	_
9	3	1	_	_	_	_
10	2	—	—	—	_	—

4 years for training 2 years prediction 1 year gap

6 evaluation tests

Evaluation of results

- Micro-averaged Precision (P), Recall (P) and F-Measure (F) for the positive class (C = 1)
- The best results for each Pr value are reported in bold (usually when all instances from the previous periods are employed)

Tr	$PR = 1(\Delta = 0)$			$PR = 2(\Delta = 1)$			$PR = 3(\Delta = 2)$			$PR = 4(\Delta = 3)$			PR =	$5(\Delta$	= 4)	$PR = 6(\Delta = 5)$		
-	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
1	16.7	0.5	1.0	11.5	29.1	16.5	38.1	27.1	31.7	14.9	48.8	22.8	11.9	62.3	19.9	12.1	62.8	20.3
1 1				10.8													-	-
3	3.2	13.5	4.7	8.7	41.0	14.3	30.8	30.7	30.7	36.7	33.6	35.1	16.4	35.0	22.3	-	-	-
				12.9										-	-	-	-	-
5	11.4	10.3	9.3	13.1	27.7	17.7	28.1	33.5	30.6	64.9	53.6	58.7	-	-	-	-	I	-
6	8.0	9.8	8.5	20.1	30.6	24.3	59.3	40.0	47.8	-	-	-	-	-	-	-	-	-
7	12.5	5.6	7.7	16.1	20.7	18.1	88.2	50.0	63.8	-	-	-	-	-	-	-	-	-
8	14.3	4.8	7.1	35.3	17.9	23.8	-	-	-	-	-	-	-	-	-	-	-	-
9	35.0	5.4	9.0	28.4	28.1	28.3	-	-	-	-	-	-	-	-	-	-	-	-
10	42.9	14.3	21.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Results for MeSH Tree B (Organisms)

CICLING 2013 Temporal Classifiers for Predicting the Expansion of Medical Subject Headings

Results on Diseases

Tr	PR =	$1(\Delta$	= 0)	$PR = 2(\Delta = 1)$			$PR = 3(\Delta = 2)$			$PR = 4(\Delta = 3)$			PR =	$5(\Delta$	= 4)	$PR = 6(\Delta = 5)$		
-	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
1	16.4	1.2	2.3	37.8	7.6	12.7	40.4	16.3	23.2	44.4	30.2	35.9	36.3	22.9	28.1	37	36.9	36.9
2	31.3	1.4	2.8	39.7	6.2	10.7	45.6	16.5	24.2	45.1	36.4	40.3	41.3	30.3	35	-	-	-
3	26.5	2	3.8	49.1	7.8	13.5	45.4	21.7	29.4	46.2	48.5	47.3	40.4	39.8	40.1	-	-	-
4	36	1.5	2.9	34.7	6.9	11.5	42.7	28.3	34	65.8	43.8	52.6	-	-	-	-	-	-
5	25	1.9	3.5	38.3	12.8	19.3	51.1	34.2	41	79.6	57	66.4	-	-	-	-	-	-
6	26.3	3.2	5.7	35.7	12.9	18.9	67.7	34.7	45.9	-	-	-	-	-	-	-	-	-
7	32.4	6.1	10.2	40.5	16.7	23.7	81.9	45.4	58.4	-	-	-	-	-	-	-	-	-
8	36.1	4.1	7.3	48.4	23.7	31.8	-	-	-	-	-	-	-	-	-	-	-	-
9	37.5	5.8	10.1	53.1	41	46.2	-	-	-	-	-	-	-	-	-	-	-	-
10	47.4	9.3	10.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Results for MeSH Tree C (Diseases)

Results on Drugs

Tr	$PR = 1(\Delta = 0)$			$PR = 2(\Delta = 1)$			$PR = 3(\Delta = 2)$			$PR = 4(\Delta = 3)$			PR =	$5(\Delta$	= 4)	$PR = 6(\Delta = 5)$		
-	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
1	54.5	5.2	9.5	46.4	11.8	18.8	36.5	26.8	30.9	44.1	39.1	41.4	32.4	35.6	33.9	30.4	34.1	32.1
2	53.9	5.8	10.5	48.2	12.6	20	33.5	33.9	33.7	50.1	36.7	42.3	27	38.4	31.7	-	-	-
3	33.3	5.9	10	36.7	15.5	21.8	47.1	28.4	35.5	59	38.5	46.6	41.4	30.9	35.4	-	-	-
4	51.3	8.5	14.5	43.8	17.9	25.5	39	37.8	38.4	52.9	45.9	49.2	-	-	-	-	-	-
5	22.3	17.3	19.5	37.4	21.7	27.5	53.8	32.7	40.7	63.2	56.5	59.7	-	-	-	-	-	-
6	32	15.7	21.1	41.6	25.9	31.9	49.1	36	41.6	-	-	-	-	-	-	-	-	-
7	23.9	16.3	19.4	30.5	31.5	31	64.5	51.7	57.4	-	-	-	-	-	-	-	-	-
8	31.2	14.1	19.4	57.7	22	31.8	-	-	-	-	-	-	-	-	-	-	-	-
9	53.6	8.3	14.4	75.3	41.7	53.6	-	-	-	-	-	-	-	-	-	-	-	-
10	34.8	11	16.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Results for MeSH Tree D (Chemicals and Drugs)

Conclusions from the evaluation

- More years for training (higher Tr) gives better results
- For Tree B: prediction performance reached precision of 88.9% with recall of 50% (F-Measure= 63.8%), in maximum three years from the testing year
- The prediction of expansions using Pr in the range [2, 4] is possible with satisfactory results, if >=5 training years are used
- Performance in predicting expansion for the next 1 year is poor
- Top-5 features: temporal siblings, temporal all children, temporal direct children, annRatioAll, all children results,
 - Temporal features aid significantly the prediction,
 - the use of the offered PubMed annotations, and the use of PubMed corpus are extremely beneficial.

General conclusions

• Our methodology

- under conditions can predict the MeSH regions that will be expanded with a relatively high Precision, if sufficient number of training instances is provided, and a lengthier prediction span is given as a parameter
- is a first step for automated ontology evolution, provided that it is augmented with a second step, which may also suggest specific new terms to be added below the MeSH headings that are predicted as positive

Next steps

. Find the terms that will extend the MeSH hierarchy

 Evaluate the methodology on ontologies (e.g. GO) or other domains (e.g. patents) with similar structure

Thank you!

Questions?

Iraklis Varlamis varlamis@hua.gr