
SemaFor: Semantic Document Indexing
using Semantic Forests

George Tsatsaronis
Department of Computer and

Information Science
Norwegian University of
Science and Technology

Trondheim, Norway
gbt@idi.ntnu.no

Iraklis Varlamis
Department of Informatics and

Telematics
Harokopio University of

Athens
Athens, Greece

varlamis@hua.gr

Kjetil Nørvåg
Department of Computer and

Information Science
Norwegian University of
Science and Technology

Trondheim, Norway
Kjetil.Norvag@idi.ntnu.no

ABSTRACT
Traditional document indexing techniques store documents using
easily accessible representations, such as inverted indices, which
can efficiently scale for large document sets. These structures of-
fer scalable and efficient solutions in text document management
tasks, though, they omit the cornerstone of the documents’ purpose:
meaning. They also neglect semantic relations that bind terms into
coherent fragments of text that convey messages. When seman-
tic representations are employed, the documents are mapped to the
space of concepts and the similarity measures are adapted appro-
priately to better fit the retrieval tasks. However, these methods
can be slow both at indexing and retrieval time. In this paper we
propose SemaFor, an indexing algorithm for text documents, which
uses semantic spanning forests constructed from lexical resources,
like Wikipedia, and WordNet, and spectral graph theory in order to
represent documents for further processing.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Retrieval models,
Selection process]; H.3.1 [Content Analysis and Indexing]: [Lin-
guistic processing, Thesauruses]

1. INTRODUCTION
Document indexing has been traditionally conducted with the

use of a term to document mapping and its inverse, which takes into
account only the frequency of occurrence of terms in the indexed
documents. The simple, yet powerful, mechanism of inverted in-
dexes does not consider any other type of information regarding
terms, such as the semantic relatedness between terms, and their
syntactic role in the document. Moreover, it is frequently the case
that different meanings are conveyed in text even within the same
document, as a document might address different topics.

In this paper we propose SemaFor, a new document indexing
algorithm that takes into account the semantic relatedness of terms
within documents. SemaFor aims at: (1) extracting information
from text, namely terms, and identify their semantic connections,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

Document processing
Module

Documents

Semantic Extraction of
Document/Query Topics

Semantic
Representation

Query

Language Specific
WordNet

(e.g., WordNet, BalkaNet)

Language
Specific

Wikipedia

Language Specific Knowledge Bases

Semantic Indexing

Semantic indexing
Module

Phrase Detection,
Lemmatization,

POS tagging, WSD

All Documents’
Semantic

Representation

Query’s
Semantic

Represenation

Semantic Matching
and Ranking

Semantic Similarity
Computation Module

Candidate
Documents’
Semantic

Represenation

Ranked
Results

Figure 1: The high-level representation of the SemaFor process
flow.

(2) store the semantic information in an efficient manner that can
accommodate fast processing of documents, and, (3) use publicly
available resources for the task, and an efficient methodology that
does not require any type of training, so that it can scale up for large
document collections (e.g., Web documents), and be applied across
different domains (domain agnostic).

The overall idea of SemaFor lies in the formulation of seman-
tic spanning trees (SST s) and semantic spanning forests (SSF s).
Each document is first parsed and transformed into a set of SST s,
each one corresponding to a document topic. The SSF that con-
tains the respective SST s is the document’s semantic representa-
tion. The forests are consequently indexed in the database, follow-
ing an efficient methodology that allows fast retrieval of potential
matches at query time. A similarity measure for semantic spanning
forests, which is based on spectral graph algebra, is introduced in
order to provide the ability of the index to produce similarity scores
between documents (SSF s),i.e., for the purposes of documents
clustering, or create a ranking of the potential matching SSFs to
a given user query for the purposes of document retrieval. The con-
structed index allows for fast search and ranking of the semantic
forests (documents), given a user query.

A high level representation of the process flow in SemaFor, is
shown in Figure 1. Given an initial set of input text documents, the
semantic extraction of document topics module pre-processes the
texts and creates a semantic spanning forest for each document, as
explained in Section 3. In the semantic indexing module documents
are indexed, in the form of semantic spanning forests, in a format
that allows the fast computation of similarity between them. Any
query or input document is first transformed into a semantic for-

est and then the semantic indexing and ranking module performs
the similarity computation between the input semantic forest and
the indexed documents. Similarity computation is performed using
spectral graph algebra, as explained in detail in Section 3. Finally,
documents are ranked based on the similarity values computed by
this module.

2. RELATED WORK
The basic hypothesis behind our approach is that the use of se-

mantic information for the representation of documents may im-
prove the performance of the text clustering and retrieval tasks,
both in precision and recall. The hypothesis is based on concrete
scientific indications that have been published in the past, e.g., [12,
21]. The approaches of this category fall under two main schools of
thinking: (a) use of statistical learning theory and machine learning
techniques, which are trained on large text corpora, and (b) use of
lexical resources, such as word thesauri and electronic dictionaries,
in order to disambiguate document terms in their context.

The main idea behind all approaches of the first category is to
group the terms of a document into subsets (topics) that contain
statistically “related" terms. The terms of a group either belong in
the same phrase (keyphrases [10]), or relate to the same document
item (e.g., author, title [16]). In a different direction, Chang et al.
[7] use probabilistic graphical models in order to group the terms
of a text document in topics and represent documents as combina-
tions of one or more topics. Buntine et al. [6] model the documents
based on a hierarchy of topics built from a set of document bags,
using a hierarchical version of multinomial PCA. For the partition-
ing of the words into topics, they use a Dirichlet distribution [4].
A major disadvantage of such approaches is that they require ex-
tensive training with large text corpora, and the produced models
cannot be easily transferred across domains.

From the works that use lexical and other knowledge resources
in document processing, we focus on those that aim at representing
text documents as graphs of terms such as [20] that use lemma defi-
nitions, [26] that use WordNet synsets and [11] that uses Wikipedia
entries in order to construct a network from the terms of a sen-
tence. According to [34] linguistic and crowdsource-based knowl-
edge sources can be used complementary in this task.

Our work combines WordNet and Wikipedia in order to provide
increased coverage and take the best of both worlds (“wisdom of
linguists" and “wisdom of crowds"). The processing of document
semantics in SemaFor results in a graph that contains the document
terms only. Though SemaFor does not perform topic detection lit-
erally, the SST s of each indexed document can be seen as the doc-
ument topics. In addition, taking one step further to the aforemen-
tioned approaches, SemaFor indexes the document graph using a
mechanism that facilitates storage and fast processing, and incor-
porates semantic information inside the indexing data structures.

Close to our approach are also the works that embed senses and
semantic information for text document management. In this di-
rection, Generalized Vector Space Models (GVSM) and semantic
kernels for the purposes of document similarity, with application
to text classification [2, 15] and text retrieval [22, 24, 28] attempt
to model the semantic information of documents. The work of
Henderson et al. [12] was the first approach to introduce semantic
forests as defined by Schone and Nelson [20], and the results show
that the use of semantic forests in information retrieval is effective.

An important point in existing approaches is the consideration of
word sense disambiguation methods (WSD) which can potentially
offer the transit from terms to senses. In this paper we tackle dis-
ambiguation of terms by employing a very fast, yet simple, WSD
algorithm that provides state of the art performance and is used as

a very competitive baseline for WSD methods; the method is called
the first sense heuristic and it selects the most frequently appear-
ing sense of each word in order to disambiguate it1. The first sense
heuristic provides very high accuracy in almost every WSD bench-
mark data set available [18].

Finally, with regards to semantic indexing, existing methodolo-
gies that map documents to graphs using the aforementioned method-
ology ignore the semantic information at indexing level. In [13],
each document is mapped to a graph with terms as vertices and 4
types of edges (based on WordNet relations). The graph structure
is neither indexed, nor employed in the computation of similarity
between documents. Instead, only the document terms with their
weights are stored, with the graph aiding only in the clustering of
the terms. In [29] documents are mapped to semantic forests using
the co-occurrence of terms (actually stems) and their semantic re-
lations (as given by WordNet) in order to draw semantic relations
between terms. During the indexing and document similarity com-
putation phases, the graph information is neglected and each forest
is perceived as a set of terms. For the computation of the simi-
larity between concept forests (i.e., between documents) only the
percentage of the common nodes of the trees is employed.

The solution that we introduce in SemaFor is a lightweight repre-
sentation of the document graph that keeps only the strongest edges
of a semantic graph thus forming a spanning tree. In contrast to the
aforementioned approaches, we employ spectral graph theory in
order to convert the spanning trees into an indexable format (a set
of points in a metric space) and a fast distance measure for measur-
ing the distance between documents.

3. THE SEMAFOR ARCHITECTURE
In this section we present the details of the SemaFor architecture

as shown in the high level representation of Figure 1. In Section
3.1, we explain the operations of the Document Processing mod-
ule, which constructs the semantic spanning forests given a set of
documents. Section 3.2 explains the details of the Semantic Index-
ing module: (a) how the semantic spanning forest is transformed
into a set of points in a metric space using spectral graph theory,
and (b) what information is stored in the index for each seman-
tic spanning forest. Section 3.3 illustrates the spectral graph sim-
ilarity computation module, the details of the distance metric and
the algorithm employed in SemaFor for document comparison and
similarity computation. Finally, Section 3.4 provides details on the
document retrieval mechanism and explains how the index can be
employed to provide a fast and scalable document retrieval solu-
tion.

3.1 Construction of Semantic Spanning Forests
Given a document D, the semantic spanning forest construction

process (Alg. 1) comprises three steps: (a) the pre-processing of the
document, comprising part-of-speech tagging (POS tagging), and
phrase detection, (b) word sense disambiguation, and (c) construc-
tion of the semantic spanning forest using measures of semantic
relatedness.

3.1.1 Document Pre-processing
For a given document D of the collection, we initially perform

POS tagging using the Stanford Part of Speech Tagger [23].This
tagger offers state of the art performance (at the levels of 95% and
above), and also enables us to perform sentence splitting in the doc-
ument. The set of tags produced by the tagger is mapped into the
1In our implementation we are using WordNet as the main dictio-
nary, or Wikipedia definitions if the term is ambiguous and does not
appear in Wordnet

Algorithm 1 SSF(D)
1: INPUT: A text document D.
2: OUTPUT: The Semantic Spanning Forest (SSF) of D, SSF(D)
3: T : A set of term-POS pairs
4: G, SSF: Initially empty graphs
5: V : The set of vertices of G, E: The set of edges of G
6: T := PreProcessDoc(D)
7: for all tp ∈ T and tp ∈WordNet do
8: Disambiguate(tp)
9: end for

10: for all i = 1 to |T | − 1 do
11: for all j = i+ 1 to |T | do
12: if tpi, tpj ∈ WordNet then
13: S(tpi, tpj) = SR(tpi, tpj)
14: else
15: S(tpi, tpj) =WLM(tpi, tpj)
16: end if
17: if S(tpi, tpj) > 0 then
18: Add tpi, tpj in V and 1

S(tpi,tpj)
in E

19: end if
20: end for
21: end for
22: for all c ∈ connected components of G do
23: SSF∪ MinimumSpanningTree(c)
24: end for
25: RETURN SSF

four basic part-of-speech (POS) tags, i.e., noun, verb, adjective,
and adverb, that exist in WordNet. Once the POS for each docu-
ment word is known, we perform phrase detection for recognizing
terms of more than two words (e.g., "United States of America").
The phrase recognition takes place by simple dictionary look up,
which in our case consists of WordNet and Wikipedia, examining
only the noun phrases of each sentence. This first step of document
pre-processing (Step 6, Alg. 1, computes for D all the terms of each
sentence, and their POS. Finally, we remove all the stopwords2.

In the WSD step (Step 8, Alg. 1) we use the first sense heuristic
approach to disambiguate the terms into their respective sense. The
first sense heuristic has shown state of the art performance in WSD
and is used as a powerful, yet simple, baseline for the task[18].

3.1.2 Semantic Spanning Forest Construction using
Semantic Relatedness

The algorithm of the SSF (D) construction, for a given docu-
ment D is described by Alg. 1. Given that D contains a set of
n term-POS pairs, namely T = tp1, tp2, ..., tpn, in the remain-
ing of this section we describe how a semantic spanning forest is
constructed from this set. Primarily, note that for any given pair
(tpi, tpj) with i ̸= j and both i, j ∈ [1..n] the t part of the term-
pair tpi might be identical with the t part of the tpj term pair, but
then the p part in the two term pairs must differ (i.e, we keep the
set of all distinct term-POS pairs for D).

Initially, we compute the semantic relatedness S between every
term-pair combination in T . In our implementation we are using
Omiotis [25] as the semantic relatedness measure which employs
WordNet3, and WLM, a Wikipedia-based measure [17]. Note that
the suggested methodology is general enough to allow for the use of
2There is a large number of stopword and common word
lists publicly available, e.g., the lists used in the Ellogon lan-
guage engineering platform (http://www.ellogon.org/) or GATE
(http://gate.ac.uk/).
3Omiotis offers a term-to-term semantic relatedness version (SR

any other measure of semantic relatedness or similarity. Both used
measures are in the range of [0, 1], with 1 meaning totally related
and 0 meaning totally unrelated, they are publicly available and
their performance is state-of-the-art in their category of measures
[34]. Since for both measures S(tp1, tp2) = S(tp2, tp1) we need
exactly n·(n−1)

2
computations of semantic relatedness. For each

pair (tpi, tpj) if both tpi, tpj ∈ WordNet, we are using Omiotis,
which has been shown to outperform WLM in case both terms exist
in WordNet [25] (Steps 12-13, Alg. 1). In any other case, we are
using WLM (Steps 14-15, Alg. 1), so as to cover the terms that do
not exist in WordNet. Thus, we define S(tpi, tpj) = SR(tpi, tpj),
if tpi, tpj ∈ WordNet, else S(tpi, tpj) = WLM(tpi, tpj).

After the computation of every pairwise semantic relatedness
value for the pairs in T , we construct a semantic graph which ini-
tially contains all the elements of T as nodes. Each node now rep-
resents a term-POS element of D. Then, we add an edge etpi,tpj
between every pair of nodes (tpi, tpj) for which S(tpi, tpj) > 0,
with weight wtpi,tpj = 1

S(tpi,tpj)
, and i ̸= j (Step 18, Alg. 1).

Once all the edges have been added, the semantic graph contains
terms as nodes and reverse semantic relatedness values between
them as edges. Then, for each connected component of the graph,
we apply the computation of the minimum spanning tree algorithm
of Kruskal [14] (Steps 22-23, Alg. 1).

After this computation, D is now a set of minimum semantic
spanning trees. We define this set as the Semantic Spanning Forest
representing document D (SSF(D)), and each i-th semantic tree of
D (SSTi(D)) as one of its topics. An example of a SSF (D) of a
real document D is shown in the next section.

3.1.3 An Example of Constructing Semantic Span-
ning Forests

In the following, we show how the full semantic graph and the
graph after the computation of the SSF of a real document looks
like. The following text is taken from the known CACM document
collection. It is titled "Efficient Implementation of a Variable Pro-
jection Algorithm for Nonlinear Least Square Problems", and it has
document id 2670. The body of the document is as follows:

“Nonlinear least squares frequently arise for which the
variables to be solved for can be separated into a linear
and a nonlinear part. A variable projection algorithm
has been developed recently which is designed to take
advantage of the structure of a problem whose vari-
ables separate in this way. This paper gives a slightly
more efficient and slightly more general version of this
algorithm than has appeared earlier.”

We execute Alg. 1 on this example, and show the semantic graph
G, before and after the execution of lines 22− 24 of the algorithm.
From these two graphs we can elicit important observations about
the SSF of a document and the document itself. The graph in the
left (we have omitted edges’ weights for simplicity of presentation)
shows that some of the most interconnected are least_squares_NN,
variable_NN, algorithm_NN, projection_NN, solve_V, and sepa-
rate_V. These are also some of the most important keywords of
the document. The graph on the right depicts the minimum span-
ning tree based on the edge values 1

SR
. The tree contains only

|V | − 1 which are considered as the most important edges (i.e.,
the ones with the minimum 1

SR
weight). It is simpler than the ini-

tial graph, since it retained only the most important vertices (the
most highly semantically inter-connections) within close distance

and a sentence-to-sentence semantic relatedness version. We are
using SR).

(e.g., variable_NN directly connects to least_squares_NN and non-
linear_NN, and algorithm_NN is directly connected with nonlin-
ear_NN). This example shows that the SSF of the original docu-
ment graph decreases by orders of magnitude the size of the graph,
and keeps the most crucial semantic interconnections between the
document terms, keeping within close distance the terms that best
relate semantically.

3.2 Indexing of Semantic Spanning Forests
Having the representation of documents in the form of semantic

spanning forests (SSF), we now proceed in transforming them to
a metric space where we can quickly compute similarity between
documents. For their similarity, we are based on the spectra of
the normalized Laplacian of the two bipartite graphs, following
the basis of spectral graph theory [3, 8]. The similarity between
two semantic forests is eventually based on the computation of the
Hausdorff distance [1] between the two SSFs, which considers the
spectral properties of the two graphs, and more specifically the sec-
tional curvatures of their edges. We give details on the Hausdorff
distance in the following section.

The reason behind the selection of the Hausdorff distance for
measuring the similarity between SSFs is the very good perfor-
mance of this technique in the application of graph clustering in
the fields of computer vision [9, 30] (i.e., images as graphs) and
computational bioinformatics and biochemistry [33].Thus, the fol-
lowing procedure, though not new in these other fields of research
with regards to the spectral similarity of graphs, it constitutes a
novel embedding in our case, since it is for the first time to the best
of our knowledge, that it is applied in graphs representing docu-
ments, as a means of SSFs. In the following we explain the details
of the first application of this technique in text processing and more
specifically we show how SSFs are transformed to facilitate spec-
tral similarity computation.

Initially, let G(V,E) be a graph, which in our case represents a
document as a means of a SSF, where V is the set of its vertices,
and E the set of its edges. For reasons of simplicity, let us also
assume that G is connected, forming a spanning tree. Primarily,
for every such graph in our document collection, we compute the
degree dv of each vertex v ∈ V as:

dv =
∑
u

w(v, u) (1)

where vertex u ∈ V is any adjacent node to vertex v and w(v, u) =
w(u, v) is the weight of the edge connecting them.

Then, the Laplacian L of G can be computed as follows:

L(u, v) =


dv − w(v, v), if u = v

−w(u, v), if u and v are adjacent
0, otherwise

(2)

We also construct a diagonal matrix D, with D(v, v) = dv , in
order to compute the normalized Laplacian L̂ of G. The L̂ matrix
is needed, as its eigenvalues constitute the spectrum of the initial
graph. L̂ is computed as follows:

L̂ = D− 1
2LD− 1

2 (3)

and the spectral decomposition of the normalized Laplacian L̂ as:

L̂ = ΦΛΦT (4)

where Λ is the diagonal matrix with the ordered eigenvalues as its
elements and Φ contains the eigenvectors as columns.

Since we want to measure the Hausdorff distance between two
SSFs, we can do so by embedding the nodes of each SSF into a vec-

tor space. It has been shown in the past that there is a strong connec-
tion between the heat kernel of a graph and the manifold in which
its node reside [31]. Thus, we initially compute the heat kernel
ht [8], which encapsulates the way information flows through the
graph edges over time. Essentially the heat kernel can be computed
by exponentiating the L̂ matrix using a parameter t that stands for
time. Higher values of t give more focus to the full graph (i.e., trust
more the edges of the entirety of the full graph), in contrast to lower
t values that focus on the locality of the graph. The heat kernel in
our case can be computed as follows:

ht = exp[−L̂t] = Φexp[−tΛ]ΦT (5)

Now we can also obtain the matrix that contains the coordinates for
each node in this new vector space. This can be done by applying
the Young-Householder decomposition [32] of the heat kernel ht =
Y TY , where on Y the columns will represent the nodes as vectors
in the vector space. As a result, the matrix of the resulting co-
ordinates is expressed as:

Y = exp[−1

2
tΛ]ΦT (6)

In this new vector space, the Euclidean distance between nodes
(u, v) of G can then be computed as [9]:

d2E(u, v) =

|V |∑
i=1

exp[−λit](ϕi(u)− ϕi(v))
2 (7)

where λi is the i-th eigenvalue in Λ (the non-zero value in the i-th
row of the Λ matrix), and ϕi(u) is the value in position (i, u) of the
eigenvector matrix Φ. Since for the computation of the Hausdorff
distance we need the sectional curvature of the edges of G, we
require the geodesic distance of the nodes (u, v), in addition to
their Euclidean distance. This can be computed as follows [9]:

dG(u, v) = floorn{
|V |∑
i=1

(1− λi)
nϕi(u)ϕi(v)} (8)

where n constitutes the length of the walk on the SSF with the
smallest number of connecting edges. Eventually n is the smallest
value for which the sum in Equation 8 becomes positive.

Eventually, the sectional curvature of the edge (u, v) can be com-
puted as follows (the proof can be found in [30]):

k(u, v) =
2
√
6(dG(u, v)− dE(u, v)

1
2

dG(u, v)
3
2

(9)

The sectional curvatures of the SSF are the only information that
we index for our tree structures. Essentially, the sectional curva-
tures capture the topological structure of SSF and allows us to con-
struct a low-dimensional feature space in which these values reside.
Ultimately, we only need to index those values instead of the full
SSF structure.

Algorithm 2 describes the SemaFor document indexing algo-
rithm. It assumes that the SSF of a given document D has already
been computed (using Alg 1). Eventually, a list of sets of ordered
real values are indexed for the SSF. Each set represents each SST
of the SSF, and the values are the respective sectional curvatures of
the SST edges.

3.3 The Hausdorff Distance
Given two graphs G1(V1, E1,K1) and G2(V2, E2,K2), where

V1, V2 are the respective sets of their vertices, E1, E2 are the re-
spective sets of their edges, and K1,K2 are the respective matrices
with the sectional curvatures of their edges (e.g., K1(u, v) is the

Algorithm 2 SemaFor(SSF, t)
1: INPUT: A semantic spanning forest SSF, the parameter t of

the heat kernel.
2: OUTPUT: The indexing of SSF as a set of ordered lists of real

values in a low-dimensional space.
3: L̂,Λ,Φ,K: Initially empty matrices
4: Kset: An initially empty set of ordered real values
5: L: An initially empty list of Kset

6: SST: An initially empty set of trees
7: for all s ∈ SST do
8: L̂ := NormalizedLaplacian(s)
9: Λ,Φ := EigenValueDecomposition(L̂)

10: for all (u, v) pairs ∈ s do
11: d2E(u, v) :=

∑|V |
i=1 exp[−λit](ϕi(u)− ϕi(v))

2

12: dG(u, v) := floorn{
∑|V |

i=1(1− λi)
nϕi(u)ϕi(v)}

13: K[u, v] := 2
√
6(dG(u,v)−dE(u,v)

1
2

dG(u,v)
3
2

14: end for
15: Kset := OrderValuesOf(K)
16: L := AddToList(Kset)
17: end for
18: Store SSF as L

sectional curvature of edge (u, v) in G1) we are using the Haus-
dorff distance [9] to compute the distance between G1 and G2 as
follows:

Hausdorff(G1, G2) = max
i,j∈V1

min
I,J∈V2

||k2(I, J)− k1(i, j)|| (10)

The Hausdorff distance in our case is a maximin function between
the sectional curvature matrices. Since we have assumed that the
SSFs we are examining are connected, we will generalize Equation
10 to capture all the cases, i.e., cases that SSF may contain several
semantic spanning trees (SST). The generalization takes place in a
similar manner that the average-link works during the agglomera-
tion step in the hierarchical agglomerative clustering (HAC). The
reason is simple: given two sets (i.e., the SSFs) of elements (their
SSTs), we estimate the distance between sets based on the Haus-
dorff distance between elements. This is exactly the problem faced
by the HAC algorithm.

The possible solutions are: (a) single-link, with the caveat of the
effect of chaining, (b) complete-link, with the caveat that can be
sensitive to outliers (i.e., small SST in our case, describing small
document topics that are quite distant from the larger SST, meaning
the larger document topics), and (c) average-link, which is a com-
promise between the sensitivity of complete-link to outliers and
the lack of compactness of single-link. If solution (c) is chosen,
the generalization of the Hausdorff distance between G1 and G2

becomes:

Hausdorff∗(G1, G2) =

∑|SSTG1
|

i=1

∑|SSTG2
|

j=1 Haudorff(SSTi, SSTj)

|SSTG1 | · |SSTG2 |
(11)

where |SSTG1 |, |SSTG2 | is the number of SST in G1 and G2 re-
spectively, and SSTi, SSTj are the i-th and j-th SST of G1 and
G2 respectively.

In the remaining of the paper, we will be using Equation 11
whenever the distance computation between documents is required,
e.g., document clustering using HAC, and its inverse, whenever
similarity is required (e.g., similarity between a query and a doc-
ument). Note that for two documents D1 and D2 that are iden-
tical, their SSF are identical. In this case we do not use Equa-

Algorithm 3 Hausdorff (L1, L2)
1: INPUT: L1, L2, two indexes of respective SSF.
2: OUTPUT: The Hausdorff distance between L1, L2.
3: s: A real value, initially set to 0
4: if L1 = L2 then
5: RETURN 0
6: end if
7: for all l1 ∈ L1 do
8: for all l2 ∈ L2 do
9: s := s + maxi∈l1 minj∈l2 ||l1(i)− l2(j)||

10: end for
11: end for
12: s := s

|L1|∗|L2|
13: RETURN s

k

Dmin

k
Dmax
k
Di
 k

Dj

k
Qmin
 k

Qi

k

Qj

k

Qmax

k
Dmin

k
Dmax
k
Di
 k
Dj

k

Qmin

k

Qi

k

Qj
 k
Qmax

k
Dmin

k
Dmax
k
Di
 k
Dj

k
Qmin
 k
Qi
 k
Qj
 k
Qmax

a) partial overlap

c) no overlap

Hausdorff(D,Q)

Document D

Query Q

b) full overlap

Overlap

Figure 2: Query-Document overlap options.

tion 11, because it uses the average-link, and we assume Haus-
dorff ∗(G1, G2) = 0 and the respective similarity being a very
large positive constant.

Algorithm 3 describes the computation of Hausdorff distance
for a pair of documents or a document and a query. Since the SSFs
have been indexed as ordered lists of real values, the computation
of the Hausdorff distance between two SSF is now reduced to a
maximin problem between the two lists, as shown by Alg. 3.

3.4 Efficient Document Retrieval
In a large scale retrieval task, user queries are matched against

large document collections. Even if the computation of similarity
between a query and a document is done in milliseconds, it is in-
feasible to check against all the documents in the collection. An in-
verted term-to-document index will definitely reduce the amount of
candidate documents. However, existing inverted-index solutions
are keyword-based and thus will miss all documents that semanti-
cally relate to the query but use different terminology. As a con-
sequence it is essential to have an equivalent of the inverted-index,
that uses semantic information. The structure of the information
that SemaFor indexes, facilitates the creation of such an index that
will quickly distinguish between documents with high and low se-
mantic similarity. In the following, we present the rationale behind
our inverted-spectral-index and explain how it can accelerate re-
trieval, without affecting SemaFor performance.

Since our index contains the sectional curvatures of the edges of
an SSF , stored as an ordered list of positive real values, we can
think of each document D as a 1 − d segment SD running from
kDmin to kDmax . The same holds for each query Q, which is
represented as a segment SQ running from kQmin to kQmax . Ac-
cording to [27] the two segments (see Figure 2) can: (a) partially
overlap, (b) fully overlap, or, (c) have no overlap. Based on Equa-

Text Document

Pre-processing WSD Semantic Spanning
Forest Extraction

Query

Sectional Curvatures
Computation

Documents’
Index

Hausdorff distance
computation
& Ranking

Query
pre-processing

Semantic Spanning
Forest Extraction

Sectional Curvatures
Computation

Off-line

On-line

4.7 sec (4.6%) 5.2 sec (5.1 %) 85.5 sec (84.1 %)

1.9 sec (9.8 %) 13.5 sec (69.9 %) 3 sec (15.5 %)

6.1 sec (6.0 %)

0.9 sec (4.6 %)

Figure 3: Indexing and retrieval execution times of SemaFor in
TREC2, Wall Street Journal Articles of 1990.

tion 10, it is straightforward to show that the Hausdorff distance
will be smaller in the two first cases where there is an overlap be-
tween documents. For example, the Hausdorff distances for the
three cases depicted in figure 2 are:

Hausdorff(D,Q)a=|kDmin − kQmin |,
Hausdorff(D,Q)b=|kDmax − kQmax | and
Hausdorff(D,Q)c=|kDmin − kQmin |

and it is obvious that Hausdorff distance is larger in the third case.
As a consequence, the document retrieval mechanism should first
retrieve documents, whose {kmin, kmax} segment overlaps with
the query, compute the Hausdorff distances between the retrieved
ordered sets of values and rank the documents accordingly. An R-
tree that indexes the kDmin and kDmax values for each document
D will significantly improve the retrieval time and will select the
best candidates for the matching and ranking process.

4. EXPERIMENTAL EVALUATION
We experimentally evaluate SemaFor in the text clustering and

retrieval tasks. Traditionally, semantic-based indexing approaches,
or approaches that utilize a WSD method to handle query and/or
document ambiguity, are being evaluated in data sets like the Reuters,
or the 20 Newsgroups for clustering and classification experiments
[5, 15] and TREC collections for information retrieval [13, 22,
19]. We follow the same experimental methodology to evaluate
SemaFor.

4.1 Indexing Size and Time
An important aspect of SemaFor’s scalability is that it incremen-

tally builds the index without revisiting the whole document collec-
tion. In contrast to LSI-based techniques, TF-IDF, or probabilistic
term scoring techniques, which require knowledge of the whole
document collection, the indexing of a new document in SemaFor
is done using only the document content. Additionally, the final
size of SemaFor’s index is comparable to traditional TF-IDF and
probabilistic-based indexing schemes, since it stores only the sec-
tional curvatures of the SSF edges as an ordered set of real values,
of size smaller or equal to the number of terms in the document. All
the information produced in the intermediate phases of SemaFor is
discarded after the computation of these values.

Concerning the time and space complexity of the computations
of the sectional curvatures for a document, it does not restrict the
scalability of SemaFor, since the constructed SSF is usually in the
order of magnitude of 103 nodes (i.e., typical documents have at
most few thousands of distinct terms, excluding stopwords). Thus,
in each case the processed matrix is very small, compared to tradi-
tional term-to-document matrices used in LSI-based techniques.

The computational costs of the semantic relatedness measure is
not trivial. However, with proper indexing of the knowledge bases
and services we are using, we significantly alleviate the execution
time. Indicative processing times for the TREC2 collection are de-
picted in Figure 3.

4.2 Text Documents Clustering
One imminent application of SemaFor and the Hausdorff dis-

tance between documents’ SSFs is text clustering. The application
of SemaFor in clustering is straightforward, and can be easily em-
bedded into the hierarchical agglomerative algorithm (HAC) (i.e, a
distance between two documents is the Hausdorff distance of their
SSF).

In order to evaluate the performance of SemaFor in text cluster-
ing, we use the Reuters-21578 data set, comprising approximately
21, 500 files organized in 132 (possibly overlapping) categories.
We are comparing the performance of our proposed indexing al-
gorithm and its respective distance measure between documents
against a standard baseline, namely vector space document repre-
sentation with TF-IDF term weights, LSI, and the Concept Forest
text document similarity approach [29]. In order to be compatible
with the results presented in [29], we are using the same docu-
ment subsets, produced as described in their respective work: (1)
C1, comprising 50 documents in total from the Oil and Nat-Gas
categories (25 documents from each category), (2) C2, compris-
ing 100 documents in total from the Coffee and Sugar categories
(50 documents from each category), and (3) C3, comprising 200
documents from the Grain, Wheat, Ship and Crude categories (50
documents in each category). The selected documents had a num-
ber of word occurrences (excluding stopwords and common words)
ranging from 12 to 400.

For our evaluation, we compute precision, recall, and F-Measure
(or F1 score) for each category in every case (C1, C2, and C3),
as well as macro-averaged precision, recall, macro-F1 score, and
overall accuracy. The accuracy results, that are directly comparable
with the results reported in [29] are shown in Table 1. Table 2
contains the detailed results of SemaFor for each category, in each
subset. We also report the macro-averaged precision (MP), recall
(MR), and the macro-F1 score (MF1).

4.3 Text Retrieval
For the text retrieval evaluation of SemaFor we are using the

TREC2 document collection, and more specifically the Wall Street
Journal articles from 1990, so that we can directly compare with
the semantic indexing approach proposed by Kang and Lee [13].
This document set comprises 21, 705 articles, and authors used the
50 query topics 101− 150 from the respective collection.

The whole process is depicted in Figure 3. The upper part of the
figure constitutes the off-line procedure of a single document in-
dexing with SemaFor, and reports on the absolute and relative exe-
cution times (i.e., absolute execution time

overall execution time). The reported execution times
are the average times measured per document. The lower part of
the figure reports the online procedure, given a user query, report-
ing again on the execution times needed per processing phase for
the TREC2 topics (average over the 50 topics 101 − 150). The
time measurements were taken using a single machine with 2.2
GHz dual core AMD Opteron processor, and 3 GB of RAM. The
Wikipedia database was stored in an external hard drives connected
to the machine, running at 5400 rpm. As shown from the exe-
cution times, 84.1% of a document’s indexing time (the highest)
is consumed by its SSF construction. Complexity of all the other
components is trivial, compared to this part of the indexing. Given
a TREC2 query, the 69.9% on average was consumed again by
its SSF construction. The retrieval time (4.6% corresponding to
0.9sec) was measured by having the top-50 documents ranked by
the standard TF-IDF VSM weighting using cosine in the Terrier
retrieval platform, and re-ranking them based on our index.

Figure 4 shows the average precision results of top N documents
over all queries for SemaFor, the SW-IDF semantic indexing ap-

Reuters Subset VSM LSI CF SemaFor
C1 0.64 0.64 0.74 0.94

C2 0.5 0.62 0.8 0.84
C3 0.25 0.34 0.48 0.71

Table 1: Overall clustering accuracies on the Reuters subsets.

Subset Cat. P R F1 MP MR MF1

C1
Oil 0.92 0.958 0.938

0.94 0.94 0.94
Nat-Gas 0.96 0.923 0.941

C2
Coffee 0.693 1.0 0.819

0.847 0.875 0.86
Sugar 1.0 0.75 0.857

C3

Grain 0.51 0.91 0.66

0.69 0.84 0.76
Wheat 0.51 0.86 0.64

Ship 1.0 0.6 0.75

Crude 0.77 1.0 0.86

Table 2: Detailed clustering results on the Reuters subsets.

proach introduced in [13] and the standard baseline. The SW-IDF
and TF-IDF VSM results are taken from [13].

The results in Figure 4 are very enlightening, showing that the
precision of SemaFor is higher than that of SW-IDF ([13]) in the
top-10 (k = 10) and top-20 (k = 20) documents, which is the
typical amount of retrieval results that a user examines in a search.
Precision is always higher than that of the baseline method. The
top results of SemaFor are better than that of its competitors. More-
over, the response times of SemaFor are comparable to those of its
popular competitor (TF-IDF), which makes it an ideal solution for
indexing and searching large document collections.

5. CONCLUSIONS AND FUTURE WORK
In this work, we presented SemaFor, a novel document indexing

algorithm that is based on the spectra of the documents’ semantic
graphs. SemaFor captures the semantic information carried by the
content of the indexed documents, by processing the textual content
using popular knowledge sources (WordNet and Wikipedia) in order
to extract the semantic relations between documents’ terms. The in-
dexing algorithm employs algebraic transformations from spectral
graph theory in order to provide a reduced and compact represen-
tation for each document. Based on this representation and the fast
distance based measure of Hausdorff, we are able to quickly answer
user queries by delivering precise results without loosing in recall,
as also our experimental evaluation in text retrieval has shown. Fur-
thermore, our evaluation in text clustering experiments shows that
the spectrum-based graph representation of the documents can im-
prove significantly the performance of the text clustering process.
Overall, the prototype implementation of SemaFor demonstrated
promising results, which outperform popular statistical models as
well as state of the art semantic models in text retrieval and clus-
tering tasks. Concerning the execution time of the pairwise doc-
ument similarities computation, we showed that the response time
is comparable to the popular cosine similarity measure. Our next
steps involve the optimization of the current implementation, the
decrease of the indexing time, and the increase of its scale on larger
document collections, so as to provide a very large-scale document
indexing mechanism.

6. REFERENCES
[1] M. Barnsley. Fractals Everywhere. Morgan Kaufmann, 2000.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 5 10 20

Average Precision of top N documents (P at N)

SemaFor
SW-IDF
TF-IDF

Figure 4: Average Precision of top N documents.

[2] R. Basili, M. Cammisa, and A. Moschitti. A semantic kernel
to exploit linguistic knowledge. In Proc. of the AI*IA, 2005.

[3] N. Biggs. Algebraic Graph Theory. Cambridge University
Press, 1993.

[4] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[5] S. Bloehdorn and A. Moschitti. Exploiting structure and
semantics for expressive text kernels. In Proc. of the CIKM
2007, pages 861–864, 2007.

[6] W. Buntine, J. Löfström, J. Perkiö, S. Perttu, V. Poroshin,
T. Silander, H. Tirri, A. Tuominen, and V. Tuulos. A scalable
topic-based open source search engine. In Proc. of the
IEEE/WIC/ACM WI-04, pages 228–234, 2004.

[7] J. Chang, J. Lee, Y. Kim, and B. Zhang. Topic extraction
from text documents using multiple-cause networks. In Proc.
of PRICAI, pages 434–443, 2002.

[8] F. Chung. Spectral Graph Theory. CBMS 92, American
Mathematical Society, 1997.

[9] H. ElGhawalby and R. Hancock. Measuring graph similarity
using spectral geometry. In Proc. of the 5th International
Conference on Image Analysis and Recognition, 2008.

[10] E. Frank, G. Paynter, I. Witten, C. Gutwin, and
C. Nevill-Manning. Domain-specific keyphrase extraction. In
Proc. of IJCAI, pages 668–673, 1999.

[11] M. Grineva, M. Grinev, and D. Lizorkin. Extracting key
terms from noisy and multi-theme documents. In Proc. of
WWW, pages 661–670, 2009.

[12] G. Hendeson, P. Schone, and T. Crystal. Text retrieval via
semantic forests. In TREC7, 1998.

[13] B. Kang and S. Lee. Document indexing: A concept-based
approach to term weight estimation. Information Processing
and Management, 41:1065–1080, 2005.

[14] J. Kruskal. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the
American Mathematical Society, 7(1):48–50, 1956.

[15] D. Mavroeidis, G. Tsatsaronis, M. Vazirgiannis,
M. Theobald, and G. Weikum. Word sense disambiguation
for exploiting hierarchical thesauri in text classification. In
Proc. of the 9th PKDD, pages 181–192, 2005.

[16] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A
machine learning approach to building domain-specific
search engines. In Proc. of IJCAI, pages 662–667, 1999.

[17] O. Milne and I. Witten. An effective, low-cost measure of
semantic relatedness obtained from wikipedia links. In Proc.
of the first AAAI Workshop on Wikipedia and AI, 2008.

[18] R. Navigli. Word sense disambiguation: A survey. ACM
Computing Surveys, 41(2), Article 10, 2009.

[19] M. Sanderson. Ambiguous queries: Test collections need
more sense. In Proc. of the 31st SIGIR, pages 499–506, 2008.

[20] P. Schone and D. Nelson. A dictionary-based method for
determining topics in text and transcribed speech. In Proc. of
the Acoustics, Speech, and Signal Processing, pages
295–298, 1996.

[21] P. Schone, J. Towsend, T. Crystal, and C. Olano. Text
retrieval via semantic forests. In Proc. of the Sixth Text
Retrieval Conference (TREC6), pages 761–773, 1997.

[22] C. Stokoe, M. Oakes, and J. Tait. Word sense disambiguation
in information retrieval revisited. In Proc. of the 26th SIGIR,
pages 159–166. ACM, 2003.

[23] K. Toutanova, D. Klein, C. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic dependency
network. In Proc. of HLT-NAACL. ACM, 2003.

[24] G. Tsatsaronis and V. Panagiotopoulou. A generalized vector
space model for text retrieval based on semantic relatedness.
In Proc. of the EACL 2009 (Student Research Workshop),
2009.

[25] G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis. Text
relatedness based on a word thesaurus. Journal of Artificial
Intelligence Research, 37:1–39, 2010.

[26] G. Tsatsaronis, M. Vazirgiannis, and I. Androutsopoulos.
Word sense disambiguation with spreading activation
networks generated from thesauri. In Proc. of the 20th IJCAI,
pages 1725–1730, 2007.

[27] M. Vazirgiannis, Y. Theodoridis, and T. Sellis.
Spatio-temporal composition and indexing for large
multimedia applications. Multimedia Syst., 6(4), 1998.

[28] E. Voorhees. Using wordnet to disambiguate word sense for
text retrieval. In Proc. of the 16th SIGIR. ACM, 1993.

[29] J. Wang and W. Taylor. Concept forest: A new
ontology-assisted text document similarity measurement
method. In Proc. of the IEEE/WIC/ACM WI-07, 2007.

[30] B. Xiao and E. Hancock. Geometric characterisation of
graphs. In Proc. of the International Conference on Image
Analysis and Processing (ICIAP), pages 471–478, 2005.

[31] S. Yau and R. Scoen. Differential Geometry. Science
Publication, 1988.

[32] G. Young and A. Householder. Discussion of a set of points
in terms of their mutual distances. Psychometrica, 3, 1938.

[33] J. Zeng, C. Tripathy, P. Zhou, and B. Donald. A
Hausdorff-based NOE assignment algorithm using protein
bacbone determined from residual dipolar couplings and
rotamer patterns. In Proc. of the IEEE Computational
Systems Bioinformatics Conference, pages 169–181, 2008.

[34] Z. Zhang, A. Gentile, and F. Ciravegna. Recent advances in
methods of lexical semantic relatedness - a survey. Natural
Language Engineering, 2012.

