
 Bridging XML-Schema and relational databases.
 A system for generating and manipulating relational

databases using valid XML documents.

Iraklis Varlamis
Dept of Informatics,

Athens University of Economics & Business,
Patision 76, 10434,
Athens, HELLAS

varlamis@aueb.gr

Michalis Vazirgiannis
Dept of Informatics,

Athens University of Economics & Business,
Patision 76, 10434,
Athens, HELLAS

mvazirg@aueb.gr

ABSTRACT

Many organizations and enterprises establish distributed working
environments, where different users need to exchange information
based on a common model. XML is widely used to facilitate this
information exchange. The extensibility of XML allows the
creation of generic models that integrate data from different
sources. For these tasks, several applications are used to import
and export information in XML format from the data repositories.
In order to support this process for relational repositories we
developed the X-Database system. The base of this system is an
XML-Schema file that describes the logical model of
interchanged information. Initially, the system analyses the syntax
of the XML-Schema file and generates the relational database.
Then it handles the decomposition of valid XML files according
to that Schema and the composition of XML documents from the
information in the database. Finally the system offers a flexible
mechanism for modifying and querying database contents using
only valid XML documents, which are validated over the XML-
Schema file’s rules.

Keywords
Metadata, XML, Relational Databases, Querying, Document
Storage and Retrieval.

1. INTRODUCTION

XML was initially designed for the exchange of information
electronic "documents". Rapidly, enterprises begin to adopt the
new model for information exchange and to develop applications
that support XML. Assorted by a set of supportive technologies
for data presentation, transformation, querying and validation,

XML is becoming the standard format for data exchange among
distributed applications components or co-operating applications.
The use of XML for information interchange among different
enterprises and organizations evokes the need for a common
schema that the information must follow.

The most widely supported technologies for describing the
schema of XML documents and validating their contents, are
Document Type Definitions (DTDs) and XML-Schema [1].
Domain experts aim to precisely define the rules that must be
followed by the exchanged documents, creating a communication
channel among co-operating enterprises and organizations.

With the use of XML, communication and information exchange
can be established regardless of the underlying storage platform.
However, the different applications that communicate using XML
have to transform XML to the underlying information model,
which is usually a relational DBMS. These applications contain
mechanisms for exporting data from the database and generating
XML documents as well as for storing XML documents in the
databases. As stated in [2], such mechanisms must be general,
dynamic and efficient. The application that satisfies these criteria
will support a wide range of information interchange tasks.

In the video industry, for example, companies possess a huge
amount of digitized video information and meta-information,
which must be made available to their customers and
collaborators. Video information usually includes programs,
movies, documentaries, advertisements, video clips etc. This
information is stored, in digital format, in a video database and is
decomposed in scenes and plans. Meta information refers to the
contributors, the technical specifications, the existing copies of a
program and their maintenance state, the concept and content of
an audiovisual program, and is equally important to the digitized
audiovisual program. MPEG-7, the new format for video meta-
information is developed to describe such information and certain
efforts have been made to create an XML equivalent of it. [3]

A schema describes the structure of an XML document. It
indicates which elements appear in the document and which sub-
elements, attributes, and relations are allowed within each
element. Authors can invent their own schemata and share them
with other authors or readers. The schema can be used to validate
the structure of the XML document automatically and also to

Permission to make digital or hard copies of all or part ofthis work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’Ol, November 9-10,2001, Atlanta, Georgia, USA.
Copyright

105

decompose an XML document to the pieces of information it
comprises of.

Co-operative, distributed systems are developed that control the
digitization of audiovisual information, the extraction of content
features, the recording of additional information, and the
information retrieval and re-synthesis tasks [4]. The various
components of such systems need a common schema for the
exchanged XML information.

The purpose of this paper is to present the X-Database system that
utilizes the structure of the XML documents, as it is described in
XML-Schema:
- to generate a relational database schema
- to store XML documents’ information in the database
- to create XML documents from the database contents
- to update and query the contents of the database using

exclusively XML documents

X-Database has been developed to support a co-operative video
annotation, storage and query process, and tested with video
metadata. However, its generic design enables the generation and
manipulation of a relation database according to any XML
information schema. The information transferred among the
various co-operating processes is modeled using XML documents
that comply with the strict rules expressed in XML-Schema.

In order to demonstrate the architecture and mechanisms
employed by our system, we use the video information paradigm
throughout the paper. The same example is used to illustrate the
advanced capabilities of XML-Schema in describing the XML
documents’ structure and its representation in a relational database
schema. The process of inserting, deleting, modifying and
querying relational data using XML documents is also
demonstrated for the video metadata case.

In the following section the information flow of the whole
annotation and querying system is depicted and the system
architecture is presented. Section 3 presents the various entities
and structures of the XML-Schema file used in this system. In
Section 4 a detailed description of the X-Database module, is
performed and certain issues that were confronted during the
database design are illustrated. Section 5 presents related work on
the area of XML storage and retrieval from relational DBMSs,
attempting a comparison with commercial DBMSs tools and other
relevant research work. In section 6, some experimental results are
demonstrated and the final conclusions are drawn in section 7.

2. The implemented information system
2.1 Information flow

The video information annotation and querying system is
presented in Figure 1. The information flow among the various
system components is described in the following.

1) The administrator of the Video-Information Model, analyses
the information to be stored in the database. The analysis process
results to an XML-Schema file. This file is used as a validating
mechanism for the XML documents that will be created.
2) The X-Database module receives the XML-Schema file and
automatically generates the database.

3) The annotator creates XML documents containing information
about audiovisual contents.

Figure 1. Information Flow

4, 5) The media administrator matches the digitized program
descriptions with real media or media copies and provides all the
media information related to each audiovisual object. The
administrator can insert, update, delete and retrieve information
from the database (step 4) and store the digitized video files into
the database (step 5)
6) The web-users retrieve information from the database. User
queries are translated to the appropriate XML documents before
being sent to the X-Database module.
7,8) The X-Database module receives XML documents created
during steps 4 and 6 and converts them to SQL commands. It also
retrieves the query results and constructs the XML-Reply
documents, which are sent either to the media administrator (step
7) or to the web-users (step 8).

2.2 System architecture

The generic system architecture is presented in the following
figure (). The included components are described in the following
paragraphs.

Figure 2. System Architecture

ORACLE 8i
RDBMS

X-Database COM

Application

- Create
- Insert
- Select
- Update
- Delete

XML XML XML

Oracle Call Interface

XML-Schema
- Validation
- Entities Descr

ANSI SQL

Application Application

Local Application
Annotator

XML

Local Interface
Media - Administrator

Web Interface
End-User

XML (Select)

XML
(Insert/Update/
Delete/Select)

Video - Information
Model

X-Database COM
XML (Reply)

SQL
Commands/Results

XML-Schema

Digitized media

1

3

2
4

5

6

7

8

Relational
Database

106

2.2.1 The database
The system was developed over the Oracle 8i RDBMS and the
Oracle Call Interface was used to access the database. However, in
an effort to keep the system generic, we addressed only ANSI
SQL commands to the database so that it works with any
relational DBMS. The schema of the database is not predefined.
All the tables and relationships are created by the X-Database
system according to the XML-Schema structure.

2.2.2 Applications
The system users are divided into two categories: professional
users, such as video editors, archivists and producers, who access
the audiovisual information in a local environment and non-
professional users who search the information using a web based
application.

A web application, implemented using ActiveX components,
allows users to compose their queries. These queries are converted
into proper XML documents and sent to the X-Database module.
The retrieved information is sent back to the application, as an
XML document and is presented to the users.

A local application developed in C++ enables the media
administrators to modify the database contents. Video annotators
use an additional application to describe video contents and
produce XML documents, which are then forwarded to the media
administrators.

The web application performs only select statements to the
database while the media administrator’s application can perform
insert, update, delete, select and in special cases create statements
to the database. In addition to this, several types of connection
privileges have been created to establish different access levels to
the information stored in the database for web and local users.

2.2.3 Database Interface
All applications communicate with each other and the database
using XML documents. This communication is supported by an
extra application, the X-Database, which acts as interface between
applications and database. This architecture will allow future
applications to interact with the database through the same
interface, without knowing anything about the database structure.
The X-Database module is implemented as a COM object
developed in C++ and can be accessed both by web based and
local applications.

3. The X-Database module
3.1 Advantages from the use of XML-Schema
language

The implemented data model is based on the directives of MPEG-
7 [5] format for video metadata and is expressed using the
emerging XML-Schema notation.

The use of XML-Schema induces many advantages to the system:
− It offers a strict way of defining the structure of interchanged

information
− It can be easily produced from the analysis of the physical

model of information. Once the information model is
described in an object-oriented notation, it can be mapped

into an XML-Schema and consequently into a database
schema.

− In opposition to DTDs, it has an object-oriented nature. It is
easier for object oriented analysis tools to export the
information structure to an XML-Schema file, which can
then be used by our system.

The major innovations of the X-Database module are:
- It takes as input an XML-Schema file, which describes the

logical structure of information, maps it to a relational database
schema and automatically creates the database.

- It uses the same XML-Schema file to validate the structure of
XML documents transferred between the database and the
system applications.

- The XML-Schema file defines the structure of the four basic
database commands (insert, update, delete, select). This enables
the database contents’ manipulation exclusively through the use
of valid XML documents.

Several issues on mapping object-oriented information to a
relational schema have been faced and solved during the
development of the database interface. Problems and solutions
considering the database architecture will be discussed in detail in
the following.

3.2 The entities of the XML-Schema file

The XML-Schema file contains five different types of sub-
elements. The xsd: prefix in XML Schema terms is used to avoid
name conflicts with the respective XML terms.

− xsd:element
They define the name and type of each XML element.
For example, the first of the following statements defines that
XML files may contain an element named Comments with text
content. The second defines that XML files may contain an
element named AudioVisual with complex content as described
elsewhere in the XML-Schema.

− xsd:attribute
They describe the name and type of attributes of an XML element.
They may contain an attribute named use with value ”required”,
which states that these attributes are mandatory for this XML
element. They can be of simple (integer, float, string, etc.) or
complex type (i.e. enumerations, numerical range etc.)
To give an example, the first xsd:attribute definition states that the
TrackLeft attribute may take an integer value, whereas the second
notes that the AVType attribute may take a value whose format is
described elsewhere in the XML-Schema.

<xsd:element name="Comments"
type="xsd:string"/>
<xsd:element name="AudioVisual"
type=" AudioVisualDS "/>

<xsd:attribute name="TrackLeft"
type="xsd:integer" use="required"/>
<xsd:attribute name="AVType"
type="AVTypeD" use="required"/>

107

 <xsd:simpleType name="AVTypeD">
 <xsd:restriction base="string">
 <xsd:enumeration value="Movie" />
 <xsd:enumeration value="Picture" />
 </xsd:restriction>
</xsd:simpleType>

− xsd:simpleType
They define new datatypes that can be used for XML attributes.
To simplify the XML-Schema structure we only use simpleType
to define enumerations of strings. An example of a simpleType
follows:

− xsd:attributeGroup
They group xsd:attribute definitions that are used by many XML
elements. An example of an attributeGroup is the following:

− xsd:complexType
They represent the various entities of the metadata model.
Complex types comprise of xsd:attributes, or group of
xsd:attributes definitions and sequences of xsd:elements. Once
defined, they can be used as the type of more complex XML
elements. They contain:
− one ore more <xsd:attribute> tags
− one ore more <xsd:element> tags that describe the sub-

elements of a given complex element.
Each sub-element has a “type” or “ref” attribute. This means that
an element can contain a sub-element as a whole, or can refer to
the sub-element using its id.

Definition 1: The complex types that are only declared as “ref”
by other complex types are referred as Top-level types.

The following XML-Schema fraction gives an example of
defining the internal structure of an XML element, named
AudioVisual.

According to the XML-Schema the AudioVisual element:
- has two attributes (“id” which is a number and “AVType”,

which can take one of the values Movie, Picture or
Document),

- may contain two sub-elements namely Syntactic and
Semantic (with their sub-elements) and

- may contain a reference to a MetaInfoDS element.

A valid XML file according to the above schema would be:

In addition to this, since XML-Schema supports inheritance,
certain entities of the schema extend the features of other entities.
This is performed with the use of the <xsd:extension> tag.

The extension entities contain all the features of their parent
entity.

3.3 The structure of the XML-Schema file

The XML-Schema file used to describe the structure of XML
information is two-folded. The first part of the file contains the
definition of the various entities of information and of some
supportive structures, while the second part describes the structure
of database commands.

Applications interact with the database using strictly defined
XML documents. These documents contain the data that will be
inserted into the database and also describe the database actions
that will be performed.

Definition 2: The complex types that represent the information
entities involved in our model are referred as base elements.

Definition 3: The complex types that are used to group base
elements before they are sent for a transaction to the database are
referred as extension elements.

<xsd:attributeGroup name="AnnotationD">
<xsd:attribute name="annotation" type="xsd:string"/>
<xsd:attribute name="who" type="xsd:string"/>
<xsd:attribute name="what" type="xsd:string"/>
<xsd:attribute name="place_where" type="xsd:string"/>
<xsd:attribute name="time_when" type="xsd:string"/>
<xsd:attribute name="why" type="xsd:string"/>
</xsd:attributeGroup>

<xsd:complexType name="AudioSegmentDS">
 <xsd:complexContent>
 <xsd:extension base="SegmentDS">
 <xsd:sequence>
 <xsd:element name="Position"

type="MediumTimeD"/>
 </xsd:sequence>
 <xsd:attribute name="FirstFrame"
 type="xsd:integer" use="required"/>
 <xsd:attribute name="LastFrame"
 type="xsd:integer" use="required"/>
 <xsd:attribute name="AudioType"

type="AudioTypeD" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<AudioVisual id=”1” AVType=”Movie”>
<Syntactic>
….
</Syntactic>
<Semantic>
….
</Semantic>
<MetaInfoRef>a2<MetaInfoRef>
</AudioVisual>

<xsd:element name="AudioVisual"
type=" AudioVisualDS "/>
<xsd:complexType name="AudioVisualDS">
 <xsd:attribute name="id" type="ID"

use="required"/>
 <xsd:attribute name="AVType"

type="AVTypeD" use="required" />
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="0"

name="Syntactic" type="SyntacticDS" />
 <xsd:element maxOccurs="1" minOccurs="0"

name="Semantic" type="SemanticDS" />
 <xsd:element maxOccurs="1" minOccurs="0"

ref="MetaInfoDS" />
 </xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="AVTypeD">
 <xsd:restriction base="string">

<xsd:enumeration value="Movie" />
<xsd:enumeration value="Picture" />
<xsd:enumeration value="Document" />

 </xsd:restriction>
</xsd:simpleType>

108

The extension elements used are:
- DBCommand
This is the root element of the XML documents that are sent to the
database. It may contain zero to many Insert, Update, Delete or
Select elements.

- DBInsert, DBUpdate
They contain the elements to be inserted or updated. In order to
maintain the consistency of the database, only certain elements
can be inserted or updated. The definition of DBInsert or
DBUpdate in XML-Schema marks out which elements can be
inserted or updated. For example if an element A contains an
element of type B, only A can be sub-element of a DBInsert
element. The B element can be inserted or updated in the database
only as sub-element of an A.

- DBDelete
Contains references to elements that can be deleted. Only the ids
of the elements to be deleted appear into a Delete element/
command.

- DBReply
This is the root element used to enclose the retrieved information,
which is sent to the applications. DBReply may contain all the
base elements.

- DBSelect
This element has three parts: a) a ”return” element that contains
the base element(s) to be returned, b) a ”from” element that
contains the element(s) that will be used as criteria for the query
and c) a ”where” attribute that contains the query’s conditions.
Detailed examples of the Select process will be presented in the
following paragraphs.

The set of Complex types that represent information entities and
database commands is stored in an XML-Schema file (namely
xsdsource.xsd), which is used as initialization file for the X-
Database module.

From the two groups of types only the base types are used for the
database creation. The extension types are ignored during this
phase. These are used only for the validation of the commands
that are sent to and from the database.

4. From XML to Relational
4.1 Mapping XML-Schema entities and
structures into a Relational schema

The X-Database module can be divided in two parts.
- The first part concerns the analysis of the XML-Schema file

that contains information about the structure of the
exchanged XML documents. This information is used to
generate the relational database structures. This occurs in the
initialization phase of the module.

- The second part parses XML documents and constructs the
appropriate SQL commands that are processed by the
database. It also takes database results and formulates valid
XML documents as a reply to user queries.

a) Mapping attributes and attributeGroups

Each “attribute” or “attributeGroup” in XML-Schema is mapped
to the database to a field or set of fields respectively. The required
attributes correspond to NOT NULL constraints on the relevant
fields. The following example presents a complexType that
contains a set of attributes and its representation in the database.

CREATE TABLE DigitalStorageDS (
id NUMBER NOT NULL,
name VARCHAR2(20) NOT NULL,
PRIMARY KEY (id));

b) Mapping simpleTypes

Each “simpleType” in XML schema contains an enumeration of
strings that represent the possible values an attribute can have. To
give an example, the complexType AudioVisualDS has an
attribute named AVType of type AVTypeD, where AVTypeD is a
simpleType containing three different values (Movie, Picture,
Document). This attribute is mapped to an AVType field of type
VARCHAR2 in the AudioVisualDS table. The following
constraint is attached to this field:

AVType VARCHAR2(20) NOT NULL CONSTRAINT
CHECK (AVType IN ('Movie','Picture','Document'))

c) Mapping complexTypes

Each “complexType” in XML-Schema is mapped to a separate
table in the database. Additional tables are created to represent
many-to-many relations between complexTypes.

Two important issues that arise from the mapping of
complexTypes to database tables are containment and reference to
elements of another complexType. As mentioned before, one
element of a certain complexType may refer to its sub-elements in
two ways: as “type” (sub-elements are contained inside the parent
element) or as “ref” (previously created sub-elements are
referenced by their parent element).

CORRECT
<Insert>

<B id=”-2”/>

</Insert>

WRONG
<Insert>
<B id=”-2”/>
</Insert>

<xsd:complexType name="DBCommand">
 <xsd:sequence>
 <xsd:element name="Insert" type="DBInsert"

minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="Update" type="DBUpdate"

minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="Delete" type="DBDelete"

minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="Select" type="DBSelect"

minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xs:complexType name="DigitalStorageDS">
 <xs:attribute name="id" type="ID"

use="required"/>
<xs:attribute name="name" type="string"

use="required"/>
</xs:complexType>

109

On creating the XML-Schema all the physical relations among the
various entities have been expressed as relations of containment or
reference among the respective complex types. Therefore, when
the complex types are converted to database tables it is essential
for their relations to be correctly expressed into database
constraints.

Sub-elements may appear zero to many (unbounded) times inside
an element. The amount of possible “ref” or “type” sub-elements
is defined by the maxOccurs attribute. The minOccurs attribute
defines whether a field can be null (minOccurs=0) or not.

Combining the amount of occurrences of a sub-element with the
different types of relations results in the following cases:

Complex type A has exactly one reference to a complex type
C.

This means that an element C must have been created before any
elements of type A can refer to it. This is a one-to-many relation
so an intermediate table is not required. For complex types A and
C, two tables are created in the database. When an element of type
C is deleted then all references to it must be removed.

Constraints
table A:

C(id) ON DELETE SET NULL
table C:
CONSTRAINT C_Pkey id PRIMARY KEY.

Complex type A has unbounded number of references to a
complex type D.

This means that elements of type D must have been created before
being referenced by elements of type A. This is a many-to-many
relation so an intermediate table (A_D_link) is required, which
will keep record of the order of the references inside A. So for
complex types A and D three tables are created in the database.
When an instance of A or D is destroyed then all related records in
A_D_link are deleted.

Constraints
table A:

table D:
CONSTRAINT D_Pkey id PRIMARY KEY.
(if minOccurs=1 then Did NOT NULL.)
table A_D_link:

LETE CASCADE
CONSTRAINT A_D_ref FOREIGN KEY Did REFERENCES
D(id) ON DELETE CASCADE

Complex type A contains exactly one element of complex
type B.

This means that the element B can exist only inside A. This is a
one-to-one relation so for complex types A and B two tables are
created in the database. When an instance of A is destroyed then
the B contained in it must be destroyed.

Constraints
table A:

table B:
CONSTRAINT B_Pkey id PRIMARY KEY.

CONSTRAINT Un_Aid Aid UNIQUE

Complex type A contains unbounded number of elements of
complex type E.

This means that elements of type E are declared only inside the
container element A. The relation is one-to-many, since different
elements of type A cannot share the same sub-elements of type E.
The order in which elements of type E appear inside an element of
type A is important, so it is stored in table E. When an A element
is deleted then all the E elements contained in it must be removed
from the database.

Constraints
table A:
CONSTRAINT
table E:
CONSTRAINT E_Pkey id PRIMARY KEY.

d) Handling inheritance of types

An interesting issue encountered during the generation of the
relational schema has been the preservation of the object-oriented
nature of XML. The users should be able to access the database
contents based on the logical structure of information rather than
the database schema.

An object-oriented feature of XML-Schema is inheritance
between types. The following example describes a typical case of
inheritance and reference. The entities “Video_Tape” and “DVD”
are declared as extensions of the abstract entity “Medium” so they
inherit all the attributes and elements of “Medium” along with
their own attributes and elements. A “Program” entity references
the “Medium” in which it is stored (Figure 3).

Figure 3. Inheritance and reference

<xsd:complexType name=”Program”>
<xsd:attribute name=”kind” type=”string”/>
…
<xsd:sequence>
<xsd:element name=”storedin” ref=”Medium”/>
…
<xsd:sequence>
</xsd:complexType>

Medium
id

Video_Tape
id= 8

duration=60

Program
kind = “Film”
stored_in= 9

…
DVD
id= 9

capacity=120

110

The reference is made to the “Medium” entity but the referenced
id may be the id of a “Video_Tape” or a “DVD”. The relational
database system must be adapted to support this feature and the
application must designate the entity actually referenced. In order
to maintain such behavior a table named OBJECTIDS is created
in the database keeping record of the id and type of each element
that participates in a hierarchy. A group of triggers ensures that
the reference is assigned to the correct element of the hierarchy.

An example of a trigger, which validates that the reference id
corresponds to a record in MediumDS table follows:

CREATE TRIGGER trig_Program_Medium
BEFORE INSERT OR UPDATE OF

Medium ON Program
FOR EACH ROW
CALL CheckKindOf(:new.Medium,

'MediumDS')

4.2 Database manipulation using XML
documents

An XML document that is sent to the X-Database module
contains a root DBCommand element, which may contain many
insert, update, delete or select sub-elements. The module parses
this element and generates a set of insert, update, delete or select
queries that contain the information of the complex type.

The information of an XML element is usually stored in many
different tables. Therefore, a set of constraints, both database and
programming ones, are required to guarantee the integrity of the
database into the aforementioned actions. Some of the constraints
are:

a) Certain entities exist only as part of other entities. The
respective complex types appear only as sub-elements of other
complex types. As a consequence these complex types cannot
appear inside a DBInsert command. To give an example: the
video segments information is related to a video object, so
VideoSegmentDS elements appear only inside a VideoDS
element. This guarantees that no video segment information that
does not belong to a Video can be stored into the database.

b) Certain entities can be re-used by more than one entity. The
complex types that correspond to such entities must appear as sub-
elements of DBInsert. When a complex type refers to another
complex type, the latter must already exist into the database.

c) Certain entities contain ordered instances of other entities,
which in XML-Schema terms means that a complex type may
have more than one sub-elements of another type. The order in
which these sub-elements appear is important, hence ordering
information must be stored in the database during the XML
document parsing.

d) One or more commands can be send into the X-Database
module at the same time. These commands usually evoke a reply
from the database, so the DBReply module must be able to group
the database replies for each command.

These constraints are incorporated into the XML-Schema file in
the definition of extension elements. A pre-parsing of the XML-
Schema document gives to the X-Database module all the
information needed for parsing the XML documents.

The four database commands supported by the module are:
1) Insert: One or more top-level complex types can be found
inside a DBInsert element. The parsing starts from the top-level
element and continues recursively to all sub-elements, thus
generating and executing a series of SQL INSERT statements.
2) Update: One or more top-level complex types can be found
inside a DBUpdate element. A negative id has been given to all
new elements, so these are inserted into the database. The rest of
the elements, which have a positive number as id (this is the id
provided by the database) are updated. The ids are returned (as in
DBInsert)
3) Delete: Only top-level complex types can be found inside a
DELETE element. The database deletes the information of all
sub-elements for this element.
4) Select:
A DBSelect element has three parts:
- A where part that contains the filter of the Select query.
- A from part where the elements that contain the attributes to

be filtered appear.
- A return part that contains the element(s) to be returned.

The whole element is returned after a select statement. The
following XML fraction is an example of the DBSelect command.

This command selects all the AudioVisualDS entities that refer to
a MediumDS with id=1234. The values of various attributes that
appear inside the “from” tags are not taken into account during
the parsing of the document. These values are randomly assigned
to the required attributes, to maintain the validity of the XML
document. Only the value of –100 field is important because –100
appears in the where clause.

The value of the where attribute is the “where_clause” of the
query. From the nested structure of elements inside the “from”
part of the command, the parser is able to create all the “join
conditions” among the tables that participate to the query. From
the elements that appear in the “from” and “return” elements the
“list_of_associated_tables” is generated.
The return element has a reference to the complex type(s) that
must be selected. These references give the name of the table that
corresponds to the “return_entity”.

<DBCommand>
<Select where="@-100@ = 1234">
<from>
 <AudioVisual id="-96" Name="Gladiator"

AVType="Movie">
 <MediaInfo id="-97">
 <MediaProfile>
 <MediumRef>-100</MediumRef>
 </MediaProfile>
 </MediaInfo>
 </AudioVisual>
</from>
<return>
 <AudioVisualRef>-98</AudioVisualRef>
</return>
</Select>
</DBCommand>

111

So the first query that is sent to the database has the following
structure:

SELECT return_entity.id FROM “return_entity”,
”list_of_associated_tables”
WHERE (“join_conditions”)
AND (“where clause”)

The ids of the selected entities are returned. The module uses
these ids to address to the database a set of recursive select
commands to obtain the complete information of the selected
entities. The complete elements are returned to the application
inside a DBReply element.

4.3 Defining relational database features in
XML-Schema.

Relational databases offer many features that minimize storage
space (exact definition of fields type and size) and accelerate the
information retrieval procedure (indexes and views). Such
features are not supported directly in XML-Schema. However we
can extend the XML-Schema file of a metadata model to enable
such features.

In the attribute definition we can replace the primitive types (i.e.
string, integer etc) with simpleTypes that contain information
concerning the size or list of values etc.
For example, the attribute VideoTapeCode which is of type
xsd:string can become of type VTCode, where VTCode is defined
as follows:

<xsd:simpleType name="VTCode">
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 <xsd:pattern value="\d{3}-\d{4}"/>
 </xsd:restriction>
</xsd:simpleType>

The base attribute will be used to define the field type, whereas
the value attribute of the length element will be used as the field
size.

In order to define indexes in the RDBMS we must define the
attributes of XML-Schema that will be indexed. A simple solution
is adding an attribute named indexed that will appear and have the
value “yes” only in attributes that should be indexed.

<xsd:attribute name="id" type="xsd:ID"
use="required" db:indexed="yes"/>

However, the indexed attribute is not supported by the W3C’s
definition of XML-Schema and normally cannot appear inside an
xsd:attribute, so we declare it to another namespace (as
db:indexed).

5. Related Work

The X-Database module achieved to keep the query mechanism
fairly simple, by combining the default structure of XML
documents with the logic of SQL "Select" commands. The query

mechanism provided may not be very powerful as those of other
platforms (OQL-S of Ozone [6], WebOQL [7]) or XML query
languages (X-Query [8]), but has certain other advantages. The
query itself is an XML document, whose certain parts (from,
return) have the same structure as the other XML documents that
are inserted or updated and the where part can be easily expressed
in an SQL-like manner. Most of the query categories proposed in
[9] could be performed using our DBSelect element, such as
Simple Visual Feature Query, Feature Combination Query, Query
by Example etc.

Compared to the applications implemented in commercial
relational database management systems, X-Database provides a
complete solution in XML documents manipulation. DB2 XML
extender [10] supports the use of XML DTDs only for describing
the database schema but does not support XML-Schema, which is
more powerful in schema definition. Microsoft SQL Server [11]
uses specific template files to describe the database schema.
Informix [12], Oracle [13] and Sybase [14] mainly support
creation of XML files from database contents but did not take
advantage of the capabilities of XML-Schema. All the above
systems do not provide the ability to create the database schema
based on the XML-Schema document and moreover to use the
same document to validate all the XML documents and
commands that are forwarded to the database.

Research results and initiatives as those of presented in [15]
(concerning mapping of DTDs) and [16] are proved very useful
for the design and evaluation of our system. Although, both the
above approaches consider the process of mapping an XML-
Schema or DTD model to Relational Schema, they do not discuss
the idea of storing and querying the relational data using XML
documents.

6. Experimental evaluation

In order to test the reliability and scalability of the X-Database
module a series of test transactions is performed to the database.
These transactions included database creation, multiple insertions
and deletions, updates and selections of database contents. In all
the transactions the total response time is measured. This includes
the parsing of XML input documents the time for accessing the
database and creating the XML reply document.

The system has been measured using a simple interface, where
XML documents are inserted as text and the resulting XML is
displayed in a web browser. The simulation was running in a
Pentium II computer with 128MBytes of RAM and an IDE HD.

The X-Database algorithm is tested using different kinds of
application loads in a simulation. The performance of the module
in creating a small or larger database schema, in handling multiple
insert, update or delete commands and in processing less or more
complicated select queries is evaluated.

6.1 Database Complexity

The most critical section in the X-Database work is the creation of
the database. The module must analyze the structure of XML-
Schema document and create the appropriate number of tables
along with the required foreign keys and triggers that will

112

guarantee the integrity of the database in the cascade insertions
and deletions. Several parameters of the database schema have
been measured, such as the number of tables, foreign keys and
triggers created, as well as the database creation time for XML-
Schema files of different complexity. When the number of
complexTypes, the number of references and the number of
extensions in the XML-Schema increases, the number of tables in
the database schema increases respectively. The results are
presented in Figure 4.

Figure 4. Database Performance for XML-Schemas of
different complexity

6.2 Insertion - Selection time

In order to test the efficiency of our system, the time needed for a
set of insertions and selections from the database has been
measured. The database schema used for testing was created using
an XML-Schema file of increased complexity, with 68
complexTypes and 18 extensions. It is explicit in the resulting
graphs that both insertion and selection time are linear to the
number of retrieved elements given that all the elements are of the
same type (Figure 5). When elements of different type are
inserted, the number of consequent insertions differs and the
relation to time is not linear.

Insertions/Insertion time

0

10

20

30

40

50

0 20 40 60 80 100 120

Elements inserted

T
im

e
(s

ec
)

Figure 5. “Insert”, “Select” Test Results

An audiovisual object stores its information into 34 different
tables. As a result, an attempt to insert an audiovisual object into

the relational database evokes 34 insert SQL commands, which
are executed recursively into the database.

In the following figure, the tables where the information of an
audiovisual object is stored are listed.

7. Conclusions and further work

Attempting to create a platform that handles digitized video data
and meta-information, where different modules will access the
same database, XML is chosen to be the wrapper of the
information transferred among them. A set of rules expressed in
an XML-Schema notation guarantees the validity of transferred
documents. The explicitness of XML-Schema has been exploited
to build the relational database that stores the information.

Compared to the object-oriented one, the relational model is not
the most appropriate for storing XML data. Attempting to map
XML structures to tables and relations, we confirmed that it is
much easier to use objects instead. Similarly, Bourret in [16] uses
object schemas as intermediate between XML and relational.
However, the storage of XML into relational DBMS is an
important issue for many information systems that arises many
non-trivial problems.

The X-Database module acts as an interface between the
applications and the database. Client applications interact with the
relational database system using only XML documents
indifferently to the underlying database schema. This provides a
simple and database independent mechanism for storing and
retrieving video meta-information that can be easily applied to any
information model. Fault tolerance is achieved by adding

Complex
Types

Unbounded
refs

Extensions Tables Triggers Foreign
keys

Creation
time (sec)

Drop time
(sec)

68 35 18 140 77 260 52 31
63 31 14 111 51 197 41 20
56 29 14 99 44 172 38 20
50 27 13 88 40 154 31 20
45 26 9 81 36 139 29 11
37 23 8 69 30 93 19 9
28 18 5 50 21 64 15 8
15 9 5 26 10 31 7 4
5 5 0 11 6 12 3 3

AudiovisualDS
ObjectIDs
SyntacticDS

SyntacticDS_ KeyFrameRef_link
ThemeDS
• ThemeDS_ KeyFrameRef_link
• ShotGroupDS

♦ ShotGroupDS_ KeyFrameRef_link
♦ ShotGroupDS_ ShotRef_link

• ShotDS
♦ KeyframeDS
♦ MovingRegionDS

SemanticDS
SemanticDS_EventRef_link
SemanticDS_ObjectRef_link
SemanticDS_ EventObjectRelationRef_link

SyntacticSemanticLinkDS
SynSemDS
• SynSemDS_ ObjectRef_link
• SynSemDS_ EventRef _link
• SynSemDS_ EventObjectRelationRef _link

MediaInfoDS
MediaProfileDS
• MediaRecordDS
• MediaProfileDS_Medium_link

Summarization
HierarchicalSummary
• ThemeSummaryDS

♦ ShotSummaryDS
ShotSummaryDS_KeyFrameRef_link

♦ ShotGroupSummaryDS
SequentialSummary
• SequentialSummaryDS_ShotRef_link
• SequentialSummaryDS KeyFrameRef link

113

appropriate control procedures to the database, such as triggers
that check the validity of inserted values and reference constraints
that guarantee the cascade removal of an object and its content
objects from the database. The later is very critical since
information for an object may be stored in more than one table in
our database.

Further research has to be focused into information retrieval and
advanced query tasks. The retrieval process can be easily
accelerated if the appropriate indexes are created. For this task the
current XML-Schema can be enriched to precisely define the
indexes to be created, the information entities on which to perform
similarity search etc. Finding an efficient notation to describe such
necessities in XML-Schema is crucial in creating a database
schema that will serve advanced retrieval needs.

Additional effort is needed to solve problems that concern schema
evolution and its adoption to the database schema. We consider
that the XML-Schema is defined once in the beginning of the
whole process and never changes. In the majority of applications,
the schema changes over time; elements are added, deleted and
modified. The X-Database module is responsible for mapping
these changes to the database.

8. Acknowledgments
The authors would like to thank Panayiotis Poulos for his help
during the development phase. Many thanks to Nancy Routzouni
for many helpful discussions on this work.

References

[1] “XML Schema Part 0: Primer,” W3C Working Draft, Sept.
2000
(http://www.w3.org/TR/xmlschema-0)

[2] M. Fernandez, W.C. Tan, D. Suciu, SilkRoute: Trading
between Relations and XML, WWW9 / Computer Networks
33(1-6): 723-745 (2000)

[3] G. Akrivas, S. Ioannoy, E. Karakoulakis, K. Karpouzis, Y.
Avrithis, A. Delopoulos, S. Kollias, I. Varlamis, M.
Vazirgiannis. An Intelligent System for Archiving and
Retrieval of Audiovisual Material Based on the MPEG-7
Description Schemes, 5th WSES Multiconference on
Circuits, Systems, Communications & Computers (CSCC
2001)

[4] I Varlamis, M. Vazirgiannis, P. Poulos, G. Akrivas, S.
Ioannoy. X-Database: A middleware for collaborative video
annotation, storage and retrieval, to appear in the 8th

Panhellenic Conference in Informatics (2001).
[5] ISO/IEC JTC1/SC29/WG11, “MPEG-7 Overview (v. 1.0),”

Doc. N3158, Dec. 1999.
[6] S. Abiteboul, J. Widom, T. Lahiri, A Unified Approach for

Querying Structured Data and XML. The Query Languages
Workshop, QL'98.

[7] G. Arocena, A. Mendelzon, WebOQL: Restructuring
Documents, Databases, and Webs, Proc. ICDE'98, Orlando,
February 1998.

[8] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simeon, M.
Stefanescu. XQuery 1.0: An XML Query Language. W3C
working draft, June 2001.http://www.w3.org/TR/xquery.

[9] Y. Alp Aslandogan and Clement T. Yu, “Techniques and
Systems for Image and Video Retrieval”, IEEE Transactions
on Knowledge and Data Engineering, vol. 11, no. 1, Jan.-
Feb. 1999.

[10] IBM’s DB2 extender for XML
(http://www-4.ibm.com/software/data/db2/
extenders/xmlext.html)

[11] Microsoft SQL Server XML support,
(http://msdn.microsoft.com/msdnmag/issues/
0300/sql/sql.asp)

[12] Informix and XML,
(http://www.informix.com/xml/)

[13] Steve Muench, Using XML and Relational Databases for
Internet Applications, Oracle Corporation
(http://technet.oracle.com/tech/xml/info/htdocs/
relational/index.htm#ID795)

[14] Sybase SQL server,
(http://www.sybase.com/products/
databaseservers/ase/whitepapers/L01041.pdf)

[15] D. Florescu, D. Kossmann. Storing and querying XML Data
using an RDBMS. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering. (1999)

[16] R. Bourret, Mapping W3C Schemas to Object Schemas to
Relational Schemas,
http://www.rpbourret.com/xml/SchemaMap.html
(March 2001)

114

