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Abstract. We present an integer linear programming model of word
sense disambiguation. Given a sentence, an inventory of possible senses
per word, and a sense relatedness measure, the model assigns to the
sentences’s word occurrences the senses that maximize the total pair-
wise sense relatedness. Experimental results show that our model, with
two unsupervised sense relatedness measures, compares well against two
other prominent unsupervised word sense disambiguation methods.

1 Introduction

Word sense disambiguation (wsd) aims to identify the correct sense of each
word occurrence in a given sentence or other text span [11]. When the possible
senses per word are known, supervised learning methods currently achieve the
best results [3, 7], but they require manually sense-tagged corpora as training
data. Constructing such corpora is costly; and the performance of supervised
wsd methods may degrade on texts of different topics or genres than those of
the training data [1]. Here we focus on unsupervised methods, meaning methods
that do not require sense-tagged corpora [2, 5, 10]. We assume, however, that the
possible word senses are known, unlike other unsupervised methods that also
discover the inventory of possible senses [17].

Many state of the art unsupervised wsd methods construct a large semantic
graph for each input sentence. There are nodes for all the possible senses of the
sentence’s words, but also for all the possible senses of words that a thesaurus,
typically WordNet, shows as related to the sentence’s words. The graph’s edges
correspond to lexical relations (e.g., hyponymy, synonymy) retrieved from the
thesaurus and they may be weighted (e.g., depending on the types of the lexical
relations). Algorithms like PageRank or activation propagation are then used to
select the most active node (sense) of each word [2, 18, 19].

By contrast, we model wsd as an integer linear programming (ilp) problem,
where the goal is to select exactly one possible sense of each word in the input
sentence, so as to maximize the total pairwise relatedness between the selected
senses. Our model can also be seen as operating on a graph of word senses,
but the graph includes nodes only for the possible senses of the words in the



input sentence, not other related words; hence, it is much smaller compared
to the graphs of previous methods. Furthermore, the (weighted) edges of our
graphs do not necessarily correspond to single lexical relations of a thesaurus;
they represent the scores of a sense relatedness measure. Any pairwise sense
relatedness (or similarity) measure can be used, including measures that consider
all the possible paths (not single lexical relations) in WordNet connecting the
two senses [20], or statistical distributional similarity measures. It is unclear how
measures of this kind could be used with previous graph-based wsd approaches,
where the graph’s edges correspond to single lexical relations of a thesaurus.

To our knowledge, our model is the first ilp formulation of wsd. Although
ilp is np-hard, efficient solvers are available, and in practice our method is
faster than implementations of other unsupervised wsd methods, because of its
much smaller graphs. A major advantage of our ilp model is that it can be
used with any sense relatedness measure. As a starting point, we test it with (i)
SR [20], a measure that considers all the possible WordNet paths between two
senses, and (ii) a Lesk-like [5] measure that computes the similarity between the
WordNet glosses of two senses using pointwise mutual information (pmi) [6, 22]
and word co-occurrence statistics from a large corpus without sense tags. With
these two measures, our overall method is unsupervised. It is also possible to
use statistical sense relatedness measures estimated from sense-tagged corpora,
turning our method into a supervised one, but we reserve this for future work.

Section 2 below introduces our ilp model; Section 3 defines the two sense
relatedness measures we adopted; Section 4 presents experimental results against
two other prominent unsupervised wsd methods; and Section 5 concludes.

2 Our ILP model of Word Sense Disambiguation

Let w1, . . . , wn be the word occurrences of an input sentence; sij denotes the
j-th possible sense of wi, and rel(sij , si′j′) the relatedness between senses sij
and si′j′ . The goal is to select exactly one of the possible senses sij of each wi,
so that the total pairwise relatedness of the selected senses will be maximum.
For each sense sij , a binary variable aij indicates if the sense is active, i.e., if
it has been selected (aij = 1) or not (aij = 0). A first approach would be to
maximize the objective function (1) below, where we require i < i′ assuming
that the relatedness measure is symmetric, subject to the constraints (2). The
last constraint ensures that exactly one sense sij is active for each wi.

maximize
∑

i,j,i,′j′,i<i′

rel(sij , si′j′) · aij · ai′j′ (1)

subject to aij ∈ {0, 1}, ∀i, j and
∑
j

aij = 1, ∀i. (2)

The objective (1) is quadratic, because it is the weighted sum of products
of variable pairs (aij · ai′j′). To obtain an ilp problem, we introduce a binary
variable δij,i′j′ for each pair of senses sij , si′j′ with i 6= i′. Figure 1 illustrates the



new formulation of the problem. Each one of the large circles, hereafter called
clouds, contains the possible senses (small circles) of a particular word occurrence
wi. There must be exactly one active sense in each cloud. Each δij,i′j′ variable
shows if the edge that connects two senses sij and si′j′ from different clouds is
active (δij,i′j′ = 1) or not (δij,i′j′ = 0). We want an edge to be active if and only
if both of the senses it connects are active (aij = ai′j′ = 1).

Fig. 1. Illustration of our ilp model of word sense disambiguation.

The problem can now be formulated as follows, where i, i′ ∈ {1, . . . , n}, i 6= i′,
and (i, j), (i′, j′) range over the indices of the possible sij and si′j′ , respectively.

maximize
∑

i,j,i,′j′,i<i′

rel(sij , si′j′) · δij,i′j′ (3)

such that aij ∈ {0, 1}, ∀i, j and
∑
j

aij = 1, ∀i (4)

δij,i′j′ ∈ {0, 1} and δij,i′j′ = δi′j′,ij , ∀i, j, i′, j′ (5)

and
∑
j′

δij,i′j′ = aij , ∀i, j, i′. (6)

The second constraint of (5) reflects the fact that the edges (and their activa-
tions) are not directed. Constraint (6) can be understood by considering sepa-
rately the possible values of aij :

– If aij = 0 (sij is inactive),
∑

j′ δij,i′j′ = 0, ∀i′, i.e., all the edges that connect
sij to the senses si′j′ of each other word (cloud) wi′ are inactive, enforcing
the requirement that any edge connecting an inactive sense must be inactive.

– If aij = 1 (sij is active), then
∑

j′ δij,i′j′ = 1, ∀i′, i.e., there is exactly one
active edge connecting sij to the senses si′j′ of each other word (cloud) wi′ .
The active edge from sij connects to the (single) active sense in the cloud
of wi′ , because if it connected to a non-active sense in that cloud, the edge
would have to be inactive, as in the previous case. Hence, the active edge
connects two active senses (from different clouds), as required.

An advantage of ilp solvers is that they guarantee finding an optimal so-
lution, if one exists. As already noted, ilp is np-hard, but efficient solvers are
available, and they are very fast when the number of variables and constraints is



reasonably small, as in our case.4 We also implemented a pruning variant of our
ilp method, which removes from the graph of Fig. 1 any sense sij whose Word-
Net gloss contains none of the other word occurrences being disambiguated; the
pruning is not applied to the senses of word occurrences that would be left with-
out any sense after the pruning. This pruning significantly reduces the number
of candidate senses and, consequently, the execution time of our method.

3 Relatedness Measures

Lexical relatedness measures can be classified in three categories: (i) measures
based on dictionaries, thesauri, ontologies, or Wikipedia hyperlinks, collectively
called knowledge-based measures [4, 14]; (ii) corpus-based measures, which use
word or sense co-occurrence statistics, like pmi and χ2 [6, 22]; and (iii) hybrid
measures [16, 9]. Some measures are actually intended to assess the relatedness
between words (or phrases), not word senses, but they can often be modified
to work with senses. Other measures are intended to measure similarity, not
relatedness, though the distinction is not always clear. The first measure that we
adopt, SR, uses WordNet and belongs in the first category. The second measure
is a hybrid one, since it uses both word co-occurrence statistics (to compute pmi
scores) and WordNet’s glosses.

SR [20] requires a hierarchical thesaurus O with lexical relations, in our case
WordNet, and a weighting scheme for lexical relations. Given a pair of senses
s1, s2 and a path (sequence) P = 〈p1, . . . , pl〉 of senses connecting s1 = p1 to
s2 = pl via lexical relations, P ’s “semantic compactness” (SCM ) is defined as
below; wi→i+1 are the weights of the lexical relations (sense to sense transitions)
of P .5 The “semantic path elaboration” (SPE ) of P is also defined below; di is
the depth of pi in O’s hierarchy, and dmax is the maximum depth of O.

SCM (P ) =

l−1∏
i=1

wi→i+1 SPE (P ) =

l∏
i=1

2didi+1

di + di+1
· 1

dmax

The semantic relatedness SR between s1 and s2 is defined below, where P ranges
over all the paths connecting s1 to s2. If no such path exists, then SR(s1, s2) = 0.

SR(s1, s2) = max
P=〈s1,...,s2〉

{SCM (P ) · SPE (P )}

Instead of SR(s1, s2), we use eSR(s1,s2), which leads to slightly better results.

For two words w1, w2, their pmi score is PMI (w1, w2) = log P (w1,w2)
P (w1)·P (w2)

,

where P (w1, w2) is the probability of w1, w2 co-occurring (e.g., in the same

4 We use lp solve; see http://lpsolve.sourceforge.net/.
5 P is a path on WordNet’s entire graph, not the graph of Fig. 1 that we construct

for each sentence. A Web service implementation of SR with precomputed SR scores
for all WordNet senses is available; consult http://omiotis.hua.gr/.



sentence). If w1, w2 are independent, their pmi score is zero. If w1, w2 always co-
occur, the score is maximum, equal to − logP (w1) = − logP (w2). With sense-
tagged corpora, the pmi score of two senses s1, s2 can be estimated similarly.
In this paper, however, where we do not use sense-tagged corpora, we use the
WordNet glosses g(s1) and g(s2) of s1 and s2, and the pmi scores of all word
pairs w1, w2 from g(s1) and g(s2), respectively, excluding stop-words:

PMI (s1, s2) =

∑
w1∈g(s1), w2∈g(s2) PMI (w1, w2)

|g(s1)| · |g(s2)|

Here |g(s)| is the length of g(s) in words. The intuition is that if s1 and s2 are
related, the words that are used in their glosses will also co-occur frequently. We
use an untagged corpus of approx. 953 million tokens to estimate PMI (w1, w2).

4 Experimental Evaluation

We call ilp-sr-full and ilp-sr-prun the versions of our ilp method with and
without sense pruning when the SR measure is used, and ilp-pmi-full and ilp-
pmi-prun the versions with the pmi-based measure. We experimented with the
widely used Senseval 2 and 3 datasets, whose word occurrences are tagged with
the correct WordNet senses. Both datasets have training and test parts.

We compare our ilp approach against two other prominent unsupervised
wsd methods, both of which construct a large semantic graph for each input
sentence. The graph has nodes not only for all the possible senses of the sen-
tence’s words, but also for all the possible senses of the words that WordNet
shows as related to the sentence’s words. The edges of the graph correspond to
single lexical relations of WordNet. (Recall that, by contrast, our ilp approach
constructs a much smaller graph for each sentence, which only contains nodes
for the possible senses of the sentence’s words; and the edges of our graph do
not necessarily correspond to single WordNet lexical relations.) The first method
we compare against, Spreading Activation Network (san), consequently applies
a spreading activation to the semantic graph, and eventually retains the most
active sense (node) of each word of the input sentence. We use the san method
of Tsatsaronis et al. [21], which is an improved version and, hence, representative
of several other san methods for wsd going back to Quillian [15]. The second
method we compare against, hereafter called pr, applies PageRank on the se-
mantic graph and retains the most highly ranked sense (node) of each word in
the input sentence. PageRank was first used in wsd by Mihalcea et al. [8], but
with different improvements it has also been used by others [2, 19]. We use the
pr method that was recently evaluated by Tsatsaronis et al. [19]. The san and
pr methods were chosen because they are well-known and implementations of
both were available to us, unlike other unsupervised wsd methods [18, 12, 2].

When they cannot disambiguate (at all, or with high confidence) a word oc-
currence, many unsupervised wsd methods resort to the first-sense heuristic,
which selects the first sense of each word, as listed in WordNet. Te first sense is
the most common one, based on frequencies from sense-tagged corpora; hence,



Senseval 2 Noun Verb Adjective All

Method C P R F C P R F C P R F C P R F

san 72.2 27.8 20.0 23.3 71.1 19.6 13.9 16.3 72.4 39.6 28.7 33.3 71.9 27.9 20.0 23.3

pr 72.2 45.5 32.8 38.1 71.1 30.0 21.3 24.9 72.4 38.8 28.1 32.6 71.9 39.4 28.4 33.0

ilp-sr-full 99.6 38.6 38.4 38.5 99.6 25.0 24.9 24.9 92.8 37.4 34.7 36.0 98.1 34.2 33.5 33.8

ilp-sr-prun 99.6 38.6 38.4 38.5 99.6 24.6 24.5 24.5 92.8 37.7 35.0 36.3 98.1 34.1 34.4 33.8

ilp-pmi-full 99.6 27.9 27.7 27.8 98.9 23.4 23.2 23.3 100.0 37.9 37.9 37.9 99.5 28.6 28.4 28.5

ilp-pmi-prun 99.6 28.6 28.5 28.6 98.9 24.7 24.5 24.6 100.0 43.5 43.5 43.5 99.5 30.5 30.4 30.5

Senseval 3 Noun Verb Adjective All

Method C P R F C P R F C P R F C P R F

san 97.9 30.6 29.9 30.2 94.2 28.8 27.1 27.9 94.9 37.8 35.9 36.8 95.8 31.0 29.7 30.4

pr 97.9 38.3 37.5 37.9 94.2 39.6 37.3 38.4 94.9 40.5 38.4 39.4 95.8 39.2 37.6 38.4

ilp-sr-full 99.9 32.3 32.2 32.3 98.0 25.8 25.3 25.6 97.0 38.3 37.1 37.7 98.6 30.6 30.2 30.4

ilp-sr-prun 99.9 32.0 31.9 32.0 98.0 25.8 25.3 25.6 97.0 38.7 37.5 38.1 98.6 30.5 30.1 30.3

ilp-pmi-full 96.7 30.2 29.2 29.7 94.1 18.1 17.1 17.6 96.9 39.4 38.2 38.8 95.7 26.9 25.8 26.3

ilp-pmi-prun 96.7 27.3 26.4 26.8 94.1 19.3 18.2 18.7 96.9 39.0 37.8 38.4 95.7 26.1 24.9 25.5

Table 1. Coverage (C), precision (P), recall (R), and F1-measure (F) of wsd methods
on the Senseval 2 and 3 datasets, polysemous words only, excluding adverbs, without
using the first-sense heuristic. The results are percentages.

the heuristic is actually a supervised baseline. Unfortunately, the heuristic on
its own outperforms all existing unsupervised wsd methods.6 Hence, the ex-
perimental results of most unsupervised wsd methods, including ours, can be
drastically improved by frequently invoking the first-sense heuristic, even for
randomly selected word occurrences. We, therefore, believe that unsupervised
wsd methods should not be allowed to use the heuristic in evaluations.

Table 1 lists the results of our experiments. We follow common practice and
exclude adverbs. We consider only polysemous words, i.e., we ignore words with
only one possible meaning (trivial cases), which is why the results may appear
to be lower than results published elsewhere; the first-sense heuristic is also not
used. Since all six methods may fail to assign a sense to some word occurrences,
we show results in terms of coverage (percentage of word occurrences assigned
senses), precision (correctly assigned senses over total assigned senses), recall
(correctly assigned senses over word occurrences to be assigned senses), and F1

measure.7 A reasonable upper bound is human interannotator agreement [11].
For fine-grained sense inventories, like WordNet’s, interannotator agreement is
between 67% and 80% [13]. A random baseline, assigning senses randomly with
uniform probability, achieves approx. 20% and 14% accuracy on Senseval 2 and
3, respectively, counting both monosemous and polysemous words.

On the Senseval 2 dataset, the coverage of our ilp method (with both mea-
sures, with and without sense pruning) was significantly higher than that of san

6 When both monosemous and polysemous words are considered, the first-sense heuris-
tic achieves 63.7% and 61.3% accuracy on the Senseval 2 and 3 datasets, respectively,
with 100% coverage. At 100% coverage, precision and recall are equal to accuracy.

7 We do not assign a sense to a word occurrence when the relatedness of all of its
senses to all the senses of all the other word occurrences is zero.



and pr. In terms of F1-measure, ilp-sr-full performed overall better than san
and pr, outperforming san by a wide margin. Our method performed worse with
the pmi-based measure (ilp-pmi-full) than with SR on the Senseval 2 dataset,
though it still outperformed san, but not pr. The pruned versions (ilp-sr-
prun, ilp-pmi-prun) performed as well as or better than the corresponding
unpruned ones (ilp-sr-full, ilp-pmi-full), indicating that sense pruning suc-
cessfully managed to remove mostly irrelevant senses. Sense pruning also leads to
considerable improvements in execution time. The average execuation time per
sentence (collectively on both datasets) was 82.81, 23.45, 81.46, 17.40 seconds
for ilp-sr-full, ilp-sr-prun, ilp-pmi-full, ilp-pmi-prun, respectively. The
corresponding times for san and pr were 101.38 and 91.92, i.e., our ilp methods
are in practice faster than the implementations of san and pr we had available,
even though the computational complexity of san and pr is polynomial.8

On the Senseval 3 dataset, the coverage of all ilp methods remains very high,
with a small decline when the pmi-based measure is used. The F1 scores of the
ilp methods are now lower, compared to their respective scores in Senseval 2; this
is due to the larger average polysemy of Senseval 3 (8.41 vs. 6.48 for polysemous
words). Surprisingly, however, san and pr now perform better than in Senseval
2; and pr outperforms our ilp methods , with the overall difference between san
and ilp-sr-full now being negligible. We can only speculate at this point that
the improved performance of san and pr may be due to the higher polysemy of
Senseval 3, which allows them to construct larger graphs, which in turn allows
them to assign more reliable rank or activation scores to the nodes (senses). The
coverage of san and pr is also now much higher, which may indicate that as their
graphs become larger, it becomes easier for san and pr to construct connected
graphs; both methods require a connected graph, in order to rank the nodes or
spread the activation, respectively. Also, the pruned ilp methods now perform
worse than the corresponding unpruned ones, indicating that sense pruning is
less successful in discarding irrelevant senses as polysemy increases.

We aim to investigate the differences between the Senseval 2 and 3 results
further in future work. For the moment, we conclude that our ilp approach seems
to work better with lower polysemy. We believe, though, that our experiments
against san and pr already show the potential of our ilp model.

5 Conclusions

We presented an ilp model of wsd, which can be used with off-the-shelf solvers
and any sense relatedness measure. We experimented with SR and a hybrid pmi-
based measure on the Senseval 2 and 3 datasets, against two well-known methods
based on PageRank (pr) and Spreading Activation Networks (san). Overall, our
ilp model performed better with SR. With that measure, it performed better
than both pr and san on the Senseval 2 dataset, outperforming san by a wide

8 The complexity of san is O(n2 · k2l+3), and pr’s is O(n2 · k
3
2
l+3), where k is the

maximum branching factor of the hierarchical thesaurus, l its height, and n the
number of word occurrences to be disambiguated [19].



margin. By contrast, pr performed much better than our ilp methods on the
Senseval 3 dataset, and the difference between san and our best ilp method
was negligible. In practice, our ilp methods run faster than the pr and san
implementations we had available. We hope that our ilp model will prove useful
to others who may wish to experiment with different relatedness measures.
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