A Knowledge-based Semantic **Kernel for Text Classification**

Jamal Abdul Nasir

e-mail: jamaln@lums.edu.pk LUMS, Pakistan

Asim Karim

e-mail: akarim@lums.edu.pk LUMS, Pakistan

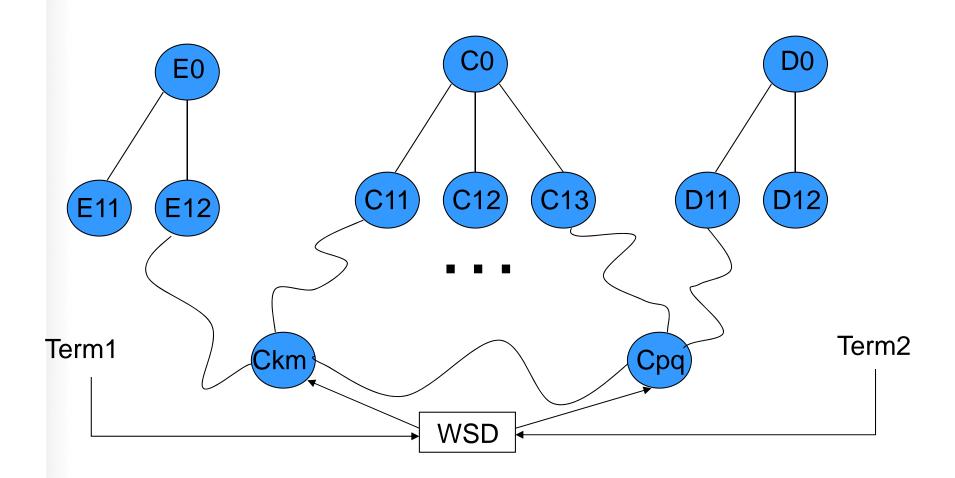
George Tsatsaronis

e-mail: george.tsatsaronis@biotec.tu-dresden.de BIOTEC, Germany

Iraklis Varlamis

HUA, Greece

e-mail: varlamis@hua.gr



Introduction - Motivation

- Typical textual representation is BOW ("Bag of Words Representation")
 - Synonymy of terms affects recall
 - Polysemy of terms affects precision
 - Semantic similarity between different terms is not taken into account
- Semantic Kernel for Text Classification
 - Based on a measure of Semantic Relatedness (OMIOTIS)
 - Combines semantic similarity and surface string matching
 - Uses a knowledge base the WordNet thesaurus for the English language
 - Can be embedded in any classifier

Background Information - *Omiotis* Measure of Semantic Relatedness

[&]quot;A Knowledge-based Semantic Kernel for Text Classification", Nasir et al., 18th Edition of the International Symposium and String Processing (SPIRE 2011)
Wednesday, October19th, Pisa, Italy

Background Information - *Omiotis* Measure of Semantic Relatedness

$$SCM(S,O) = \prod_{i=1}^{l} e_{i}$$

$$SPE(S,O) = \prod_{i=1}^{l} \frac{2d_{i}d_{i+1}}{d_{i} + d_{i+1}}$$

$$\max(SCM(S, O) \bullet SPE(S, O))$$

Semantic Kernel using *Omiotis*

$$\mathbf{\varphi}(d) = (\mathbf{\varphi}(d)^T R)^T$$

$$\kappa(d_i, d_j) = \varphi(d_i)^T \varphi(d_j) = \varphi(d_i)^T RR^T \varphi(d_j)$$

Experimental Setup

Four text classification data sets

- MoviewReview: 2 classes, 2,000 documents (1,000 each class)
- Ohsumed.91: 15 classes, Medline documents for 1991
- 20 Newsgroups: 20 categories, approximately 20,000 documents
- WebKB: 7 classes, approximately 8,000 documents

Four classifiers used

- Support Vector Machines (SVM)
- Naïve Bayes (NB)
- Maximum Entropy (ME)
- Balanced Winnow (BW)
- 10-fold cross validation, average accuracy measured

Experimental Evaluation

	MovieReview	Ohsumed	20 Newsgroups	WebKB
SVM	83.30	55.15	90.08	86.37
SVM _{Omiotis}	91.97	57.17	92.93	84.58
NB	77.41	50.32	87.27	84.17
NB _{Omiotis}	84.13	51.29	90.44	88.52
ME	79.11	51.47	85.31	91.02
ME _{Omiotis}	81.86	50.17	87.35	91.52
BW	76.23	50.93	81.66	81.42
BW _{Omiotis}	79.25	51.83	84.58	85.34

Text classification performance - Accuracy in %

[&]quot;A Knowledge-based Semantic Kernel for Text Classification", Nasir et al., 18th Edition of the International Symposium and String Processing (SPIRE 2011)
Wednesday, October19th, Pisa, Italy

Advantages and Limitations

Semantic Kernel Advantages

- Terms that in BOW were not related, now, if they are semantically similar, the similarity is taken into account
- Semantic relations are coming from a reviewed source (WordNet)
- Computationally fast, if term-to-term relatedness values are precomputed
- Applicable to any classifier, replacing the similarity measure between instances (points)

Semantic Kernel Limitations

- Coverage of terms is bounded by the coverage of the used knowledgebase (in our case WordNet)
- Document-to-Document similarity needs more time, as the overlap between semantic related terms increases, compared to the overlap in the case of BOW (overlap only when exact match of terms occurs)

Conclusions – Future Work

Semantic kernel improves BOW performance in text classification

- Evaluation with four classifiers, in four data sets
- Improvement up to 8.5 p.p.

Future Work

- Embed more knowledge sources, e.g., YAGO, to improve coverage
- Evaluate more measures of semantic relatedness/similarity using the same kernel trick
- Apply to more text mining tasks, e.g., clustering, document annotation (can be seen as classification), paraphrase detection

Thank you very much for your attention!

Questions / Comments?