A study on social network metrics and their application in trust networks

Iraklis Varlamis

Harokopio University Department of Informatics and Telematics Athens, Greece varlamis@hua.gr

MagdaliniEirinaki

San Jose State University Computer Engineering Department San Jose, CA, USA magdalini.eirinaki@sjsu.edu

MalamatiLouta

Harokopio University Department of Informatics and Telematics Athens, Greece Iouta@hua.gr

Contents

- Main concepts
- Our work at a glance
- Social Network Analysis metrics
- Local and Collaborative rating
- Experiments and results
- Conclusions and future work

Social Networks

- High popularity: many participants in blogs, collaborative tagging and customer review sites etc.
- Increased research interest: sociologists, computer scientists, marketers etc.
- Unique characteristics:authorship,shared authorship, multitude of user-provided tags, inherent connectivity between users and posted items, frequent updates

Dynamics of the social network

- The members of a network
 - link to members they trust
 - publish new information
 - read information published by other members
 - reference and comment on information provided by other members
- Influential members
 - Many people link to them
 - They publish first
 - They receive a lot of comments
 - They got referenced by many users
 - Valuable for viral marketing

At a glance

- Globally important members can be *influentials*
- Finding locally influential members, i.e. the members that influence the most a specific member or a group of members, is ideal for targeting this member or group
- Our model
 - creates a graph for the social network
 - employs social network analysis metrics for finding globally important members
 - combines global with local influence scores
 - provides personalized rankings of members for each
 - community member

Social Network Analysis metrics

- Measures of importance or prominence
- Centrality: important actors typically occupy strategic locations in a network (undirected)

Social Network Analysis metrics

50

- Prestige: important actors point or are pointed by important users
 - Hub • Authority • Authority • PageRank $Ga(i) = \sum_{(j,i)\in E} Gh(j)$ $Gh(i) = \sum_{(i,j)\in E} Ga(j)$ • PageRank $Gp(i) = (1-d) + d \sum_{(j,i)\in E} \frac{Gp(j)}{O_j}$

Local (direct) user score

- A user i *directly* trusts or is interested on another user j
- Direct trust or interest is based on explicit and implicit statements

 $LS_t(i,j) = w_{BR} \cdot BR_t(i,j) + w_{EP} \cdot EP_t(i,j)$

Local accumulative user score

 Direct statements to user j are added by user i constantly, thus refreshing her/his interest to user j.

$$LAS_{c}(i,j) = \sum_{\substack{t=c-m+1\\t > 0}}^{c} w_{t} \cdot LS_{t}(i,j)$$

• A rating system takes into account the m most frequent ratings starting from the current period c.

Collaborative local accumulative score

Aggregates the direct accumulative scores LAS_c(*i*,*j*), assigned by i to any user j, with the indirect accumulative scoresLAS_c(*k*,*j*) assigned to j by all users k that i trusts

Influence

• We define global influence of a node to be the weighted sum of all the network analysis metrics $GI(i) = w_d \cdot Gd(i) + w_c \cdot Gc(i) +$

 $T(i) = w_d \cdot Ga(i) + w_c \cdot Gc(i) + w_b \cdot Gb(i) + w_h \cdot Gh(i) + w_a \cdot Ga(i) + w_p \cdot Gp(i)$

We extend the collaborative local accumulative score to include the opinion of globally influential nodes

$$INF_{c}(i, j) = w_{local} \cdot LAS_{c}(i, j) + w_{collab} \cdot \sum_{\substack{(i, j) \in E \\ (k, j) \in E \\ (i, k) \in E}} w_{k} \cdot LAS_{c}(k, j) + \sum_{\substack{(i, k) \in E \\ (i, k) \in E}} GI(m) \cdot LAS_{c}(m, j)$$

Experiments

- Compare the performance of local and global models of influence in providing recommendations to the users of social networks and combine them in a single model
- Methodology
 - Provide for each user i a ranking for all users that i links to (directly or indirectly)
 - The ranking is based on the different rating mechanisms (combinations of local, collaborative local and global)

Dataset - Metrics

- We employed the *extended Epinions dataset*
 - 132,000 users who issued 841,372 statements
 - 717,667 positive implicit user-to-user trust ratings
 - 2 subsets of equal size (~5500 users)
 - Set A: users with few friends (5 to 10)
 - Set B: users with many friends (more than 30)
- Ratings
 - baseline: direct explicit links only (T)
 - local accumulative (L), collaborative local (CL)
 - degree centrality (Gd), closeness centrality (Gc), betweenness centrality (Gb), hub (Gh), authority (Ga), PageRank (Gp)
 - combinations: CL+individual Global , CL+combo Global

Results (local vs global)

•CL significantly improves the performance of the baseline (T), especially for users with a small circle of trust (set A)

 It is useful to check for suggestions beyond the direct neighbors of a node, in the extended neighborhood of users

•For users with many neighbors (set B), certain global models (i.e. degree, betweenness and PageRank) perform better than local models examined

Results (CL plus global)

 highly ranked users (i.e. influential users) may provide additional recommendations which are useful to all authors

•The average improvement for all the values of k is 0.12, 0.13 and 0.06 for (CL/Gd), (CL/Gp) and (CL/Gb) respectively

the local methods demonstrate slightly improved results for set B in comparison to set A (average improvement is 0.037)
the combined methods further increase this improvement (average improvement for PageRank and degree is 0.05)

Results (CL plus combo global)

Combinations of global metrics:

- •CL/GdGbGp: wd = 0.2, wb = 0.2, wp = 0.6
- •CL=GdGbGp(2): wd =1/3, wb =1/3, wp =1/3 •CL=GdGbGp(3): wd = 0.2, wb = 0.4, wp = 0.4

•GL=GdGp: wd = 0.5, wp = 0.5 •CL=GdGp(2): wd = 1/3, wp = 2/3 •CL=GdGp(3): wd = 2/3, wp = 1/3

 most of the combinations improve the results of the baseline and the collaborative local model with the combinations of PageRank and degree to outperform all other combinations

Conclusions

- We studied the contribution of various measures in identifying similar or influential actors in a social network in order to recommend them to a specific user
- Global measures are not very useful by themselves in providing recommendations to users
- When combined with the collaborative local measures have a positive impact in the final recommendation set
 - Especially for users with few "friends"