An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation

George Tsatsaronis

Web: <u>http://www.idi.ntnu.no/~gbt/</u> e-mail: <u>gbt@idi.ntnu.no</u>

Iraklis Varlamis

Web: <u>http://www.dit.hua.gr/~varlamis/</u> e-mail: <u>varlamis@hua.gr</u>

Kjetil Nørvåg

Web: <u>http://www.idi.ntnu.no/~noervaag/</u> e-mail: <u>Kjetil.Norvag@idi.ntnu.no</u> NTNU Norwegian University of Science and Technology

HAROKOPION UNIVERSITY

Presentation Layout

- Introduction and Motivation
- Contributions
- Unsupervised Graph-based Word Sense Disambiguation
 - Semantic Networks Representation
 - Techniques
- Experimental Evaluation
 - Unsupervised Techniques
 - Level of Inter-agreement
 - Comparison with State of the Art
- Conclusions and Future Directions

Introduction: The WSD task

- Assign to every word of a document the most appropriate meaning (sense) among those offered by a lexicon or a thesaurus.
 - Some examples:
 - The two friends jumped off the **bank** and into the water.
 - □ bank = sloping land especially the slope beside a body of water.
 - They passed by the **bank** to make a deposit.
 - bank = a financial institution that accepts deposits and channels the money into lending activities.
 - They used the **bank** when the army entered the city.
 - bank = a supply or stock held in reserve for future use (especially in emergencies).
 - What is the correct meaning of "bank" in each sentence?

26-Mar-10

CICLing 2010, March 21-27, Iasi, Romania. "An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation", Tsatsaronis, Varlamis, and Nørvåg

3/22

How hard is the WSD task?

Polysemous and monosemous words in Senseval.

	Senseval 2				Senseval 3					
	Ν	V	Adj.	Adv.	All	Ν	V	Adj.	Adv.	All
Mono.	260	33	80	91	464	193	39	72	13	317
							686			
Av. Poly.	4.21	9.9	3.94	3.23	5.37	5.07	11.49	4.13	1.07	7.23
Av. Poly. (P. only)	5.24	10.48	4.61	4.41	6.48	6.19	12.08	4.95	2.0	8.41

- Upper Bound: Human performace; 95%-99% coarsegrained senses, 65-70% with fine-grained senses [Haliday and Hasan, 1976].
- Lower Bound: Unsupervised Baseline: 13-20%, Supervised Baseline: 61-64%
- Inter-annotator agreement: 67% 80% [Snyder and Palmer, 2004]

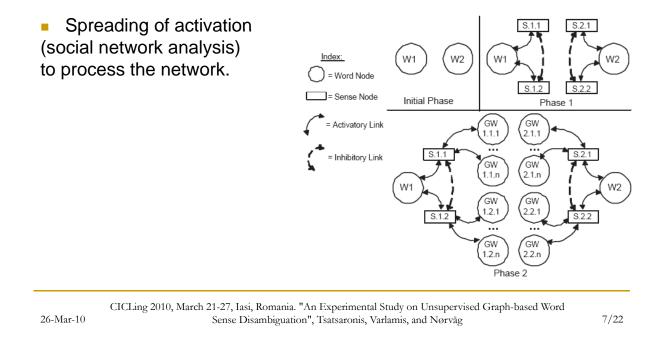
Motivation

- Several options in applying WSD:
 - Unsupervised
 - High coverage, lower accuracy than supervised, no need for manually annotated data set, low complexity

Supervised

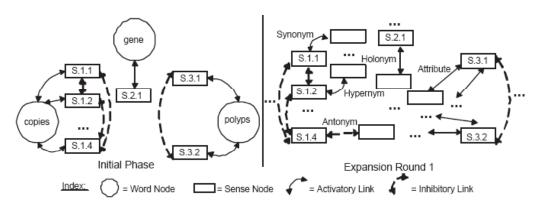
- Lower coverage than unsupervised, higher accuracy, "knowledge acquisition bottleneck", higher complexity
- Graph-based Unsupervised WSD
 - Truncated the accuracy gap from supervised
 - Map words and senses to semantic graphs
 - Research Questions:
 - How to construct such graphs, and how to process them?
 - What are the benefits from each processing technique?

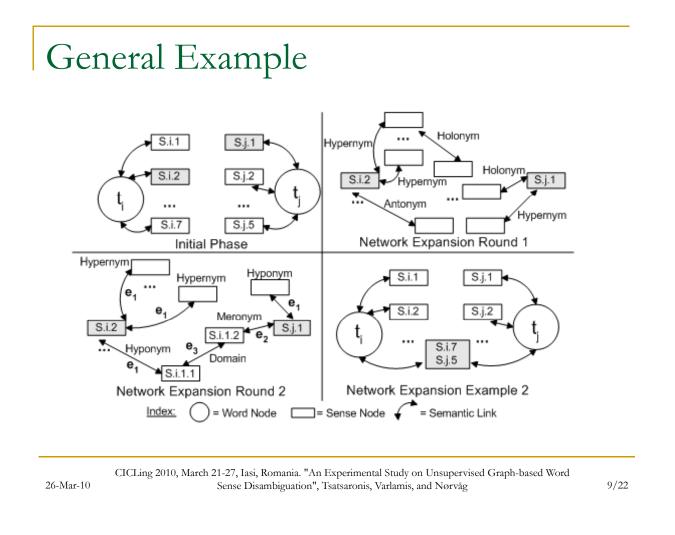
CICLing 2010, March 21-27, Iasi, Romania. "An Experimental Study on Unsupervised Graph-based Word26-Mar-10Sense Disambiguation", Tsatsaronis, Varlamis, and Nørvåg


5/22

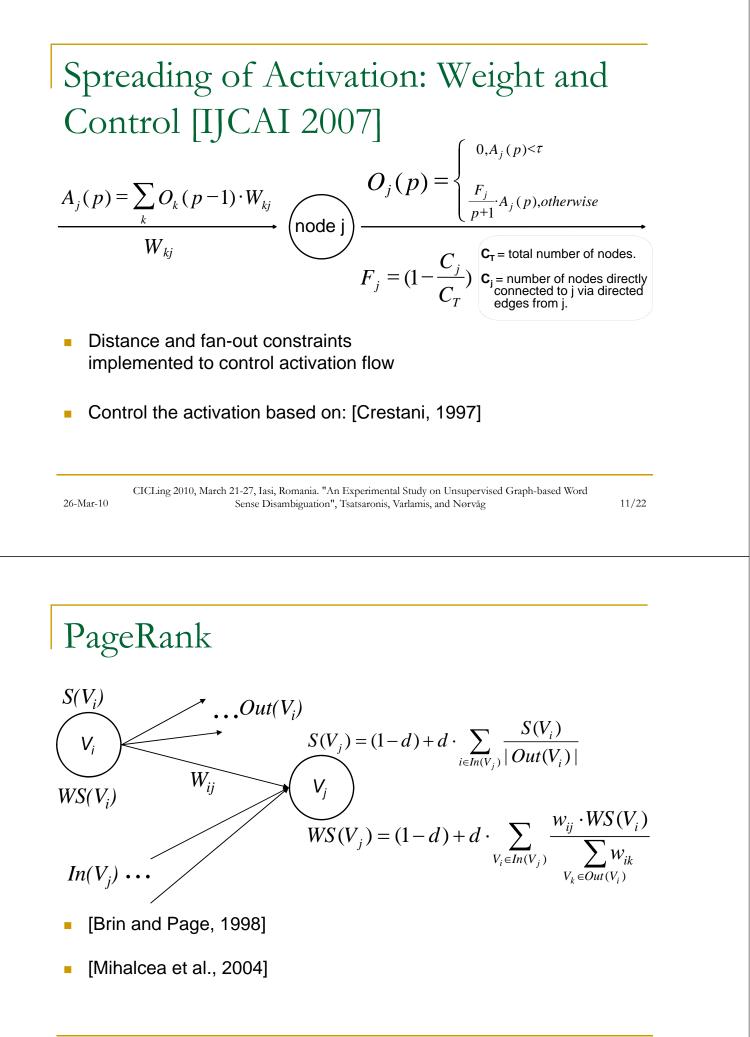
Contributions

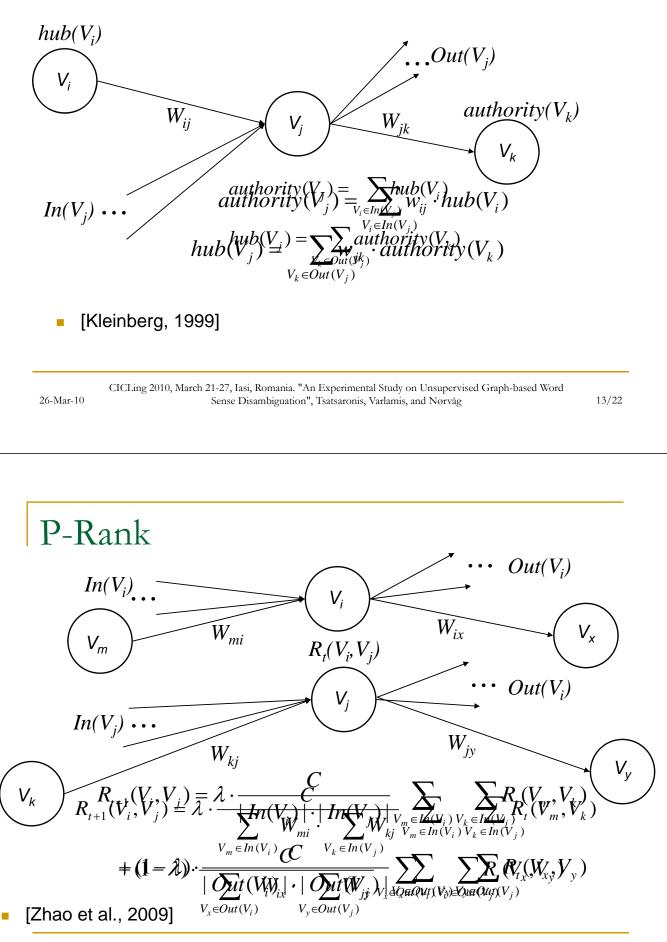
- Experimental Evaluation of Unsupervised Graphbased WSD
 - uniform semantic graph-based representation
 - evaluate alternatives
 - Spreading of Activation
 - PageRank
 - HITS
 - P-Rank
 - study space and time complexity
 - analyze inter-agreement at the sense level selection
 - generalize comparison with SoA WSD techniques


Unsupervised Graph-based WSD


- Graph-based methods demonstrate SoA results among unsupervised WSD methods [Sinha and Mihalcea, 2007].
- An example of an earlier approach: [Veronis and Ide, 1990]

Semantic Networks Creation


- [Tsatsaronis et al., 2007] proposed a new method for constructing semantic networks
 - Use all of the available semantic information from WN
 - Use edges weighting scheme
 - Example: "If both copies of a certain gene were knocked out, benign polyps would develop"



Use of Semantic Networks

- Semantic similarity/relatedness [Budanitsky and Hirst, 2006]
- Omiotis measure [Tsatsaronis et al., 2010]
 - Relatedness computation between:
 - Term pairs
 - Sentence pairs
- Publicly available: <u>http://omiotis.hua.gr</u>
- Currently the best lexicon-based measure of semantic relatedness

HITS

Sense Selection

- Per Word Node:
 - SAN: The most active sense node after activation ceases spreading
 - PageRank: The sense node with the highest PageRank score
 - HITS: The sense node with the highest authority score
 - P-Rank: The sense node with the highest similarity to the respective word node

26-Mar-10

CICLing 2010, March 21-27, Iasi, Romania. "An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation", Tsatsaronis, Varlamis, and Nørvåg

15/22

Complexity Comparison

	Space	Time
		(Network Creation + Execution)
SAN	$O(n^2 \cdot k^{2l+3})$	$O(n \cdot k^{l+1}) + O(n^2 \cdot k^{2l+3})$
PageRank (PR)	$O(n^2 \cdot k^{2l+3})$	$O(n \cdot k^{l+1}) + O(n^2 \cdot k^{\frac{3}{2}l+3})$
HITS	$O(n^2 \cdot k^{2l+3})$	$O(n \cdot k^{l+1}) + O(n^2 \cdot k^{\frac{3}{2}l+3})$
P-Rank	$O(n^2 \cdot k^{2l+3})$	$O(n \cdot k^{l+1}) + O(n^4)$

CICLing 2010, March 21-27, Iasi, Romania. "An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation", Tsatsaronis, Varlamis, and Nørvåg

Experimental Evaluation

Method		Sense	eval 2		Senseval 3			
Methou	Ν	V	Adj.	All	Ν	V	Adj.	All
SAN								
PR	69.5	37.2	59.0	58.8	61.8	47.3	60.6	56.7
HITS	69.1	36.6	59.1	58.3	69.2	40.4	66.7	57.4
P-Rank	51.3	27.31	57.4	45.6	60.6	29.9	67.8	52.1
Mih05	57.5	36.5	56.7	52.0	n/a	n/a	n/a	51.8
Agi09	70.4	38.9	58.3	59.5	64.1	46.9	62.6	57.4
Nav07								
FS	74.0	42.4	63.1	63.7	70.9	50.7	59.7	61.3

 SAN, PR and HITS show stable performance for all POS in both data sets

P-Rank: More unstable and usually significantly lower performance

 All unsupervised methods lose by the First Sense heuristic but have narrowed the gap.

26-Mar-10

CICLing 2010, March 21-27, Iasi, Romania. "An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation", Tsatsaronis, Varlamis, and Nørvåg

17/22

Inter-Agreement

Pair		Sens	eval 2		Senseval 3			
1 411	Ν				N			
SAN - PR					53.17			
SAN - HITS	52.42	23.89	57.55	39.51	50.6	40.38	50.16	46.68
SAN - P-Rank	50.84	27.16	63.46	46.77	66.52	32.94	69.04	55.37
PR - HITS	62.56	34.93	64.32	55.54	60.36	44.64	66.88	55.57
PR - P-Rank	50.55	30.95	67.3	48.1	68.2	30.58	71.42	55.78
HITS - P-Rank	53.88	23.8	59.61	46.83	67.78	31.76	69.04	54.17

- Inter-agreement in all cases always lower than 70%
- Very low inter-agreement in the VERB POS
- Evaluating the union of the correct assignments for method pairs:
 - SAN-PR leads to an upper bound of 69.73% in Senseval 2 and 63.36% in Senseval 3.
 - Similar findings with other method pairs.

Overall Comparison with SoA

- SenseLearner: [Mihalcea and Csomai, 2005]
- Simil-Prime: [Kohomban and Lee, 2005]
- SSI: [Navigli, 2006]
- WE: [Hoste et al., 2002]

Dataset	SenseLearner	Simil-Prime	SSI	WE	FS	PR	HITS	Agi09
Senseval2	64.82	65.00	n/a	63.2	63.7	58.8	58.3	59.5
Senseval3	63.01	65.85	60.4	n/a	61.3	56.7	57.4	57.4

- Unsupervised methods have narrowed the gap from supervised to almost 8%
- State of the art supervised methods have limitations:
 - Simil-Prime resides to the FS for the disambiguation of adjectives and adverbs
 - Usually bounded to words that have previously been seen in the training corpus
 - FS performs well in Senseval 2 and 3, but in domain-specific data sets, it might need re-training

26-Mar-10

CICLing 2010, March 21-27, Iasi, Romania. "An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation", Tsatsaronis, Varlamis, and Nørvåg

19/22

Conclusions

- Unsupervised Graph-based WSD methods are now closer in performance to supervised methods
- They usually present low inter-agreement rate (i.e., lower than 70%)
- An ensemble of those approaches can boost performance
- Rich thesauri like WordNet offer the opportunity to create semantic networks across POS and allow for many options in graph-based techniques

Future Directions

- Combine lexical resources to enrich the semantic representation (i.e., YAGO)
 - This may affect the graph creation method
- Design ensembles of graph-based methods
 - Take advantage of the relatively low inter-agreement rate
 - New ensemble strategies: learn to select the most proper WSD method, rather than the most proper sense
- Unsupervised Domain-biased WSD
 - This may affect both graph creation and processing

26-Mar-10	CICLing 2010, March 21-27, Iasi, Romania. "An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation", Tsatsaronis, Varlamis, and Nørvåg	21/22

Questions

Thank you very much for your attention!

Thank you Alexander, Corina, and the whole local organizing team for a wonderful CICLing 2010!

Questions/Comments?

References

- [Agirre and Soroa, 2009] Agirre, E. and Soroa, A.. Personalizing pagerank for word sense disambiguation. In Proc. of EACL, pages 33–41, 2009.
- Fin and Page, 1998] Brin, S. and Page, L.. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30:1–7, 1998.
- [Budanitsky et al. 2006] Budanitsky, A. and Hirst, G, *Evaluating WordNet-based Measures of Lexical Semantic Relatedness*, Computational Linguistics, 32(1), pp. 13-47,, 2006. [Crestani, 1997] Crestani, F., Application of spreading activation techniques in information retrieval. Artificial Intelligence Review, 11:453–
- 482, 1997.
- [Haliday and Hasan, 1976] Halliday, M. and Hasan, R., Cohesion in English. Longman 1976. [Hoste et al., 2002] V. Hoste, W. Daelemans, I. Hendrickx, and A. van den Bosch. Evaluating the results of a memory-based word-expert approach to unrestricted word sense disambiguation. In *Proc. of the ACL Workshop on Word Sense Disambiguation*, 2002. .
- [Kleinberg, 1999] Kleinberg, J., Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5):604–632, 1999
- [Kohomban and Lee, 2005] Kohomban, U. and Lee, W.. Learning semantic classes for word sense disambiguation. In *Proc. of ACL*, pages 34–41, 2005.
- [Mihalcea and Csomai, 2005] Mihalcea, R. and Csomai, A.. Senselearner: Word sense disambiguation for all words in unrestricted text. In Proc. of ACL, pages 53–56, 2005.
- [Mihalcea, 2005] Mihalcea, R., Unsupervised large-vocabulary word sense disambiguation with graph-based algorithms for sequence data labeling. In *HLT*, 2005 [Mihalcea et al., 2004] Mihalcea, R., Tarau, P., and Figa, E.. Pagerank on semantic networks with application to word sense disambiguation. In *Proc.* of *COLING*, 2004 .
- [Navigli, 2006] Navigli, R. Online word sense disambiguation with structural semantic interconnections. In Proc. of EACL, 2006.
- [Navigli and Lapata, 2007] Navigli, R. and Lapata, M.. Graph connectivity measures for unsupervised word sense disambiguation. In *Proc. of IJCAI*, pages 1683–1688, 2007.
- Sinha and Mihalcea, 2007 Sinha, R. and Mihalcea, R., Unsupervised graph-based word sense disambiguation using measures of word semantic similarity. In *Proc. of ICSC*, 2007 .
- [Snyder and Palmer, 2004]. Snyder, B. and Palmer, M., The english all-words task. In Proc. of Senseval-3, pages 41–43, 2004. .
- [Tsatsaronis et al., 2007] Tsatsaronis, G., Vazirgiannis, M., and Androutsopoulos, I.. Word sense disambiguation with spreading activation networks generated from thesauri. In *Proc. of IJCAI*, pages 1725–1730, 2007.
- [Tsatsaronis et al., 2010] Tsatsaronis, G., Varlamis, I., and Vazirgiannis, M., "Text Relatedness Based on a Word Thesaurus", JAIR, vol. 37, pp. 1-39.
- [Veronis and Ide, 1990] Veronis, J. and Ide, N., Word Sense Disambiguation with very large neural networks extracted from machine readable dictionaries, COLING 1990. [Zhao et al., 2009] Zhao, P., Han, J. and Sun, Y.. P-Rank: a comprehensive structural similarity measure over information networks. In *Proc.* of *CIKM*, pages 553–562, 2009. .

26-Mar-10

CICLing 2010, March 21-27, Iasi, Romania. "An Experimental Study on Unsupervised Graph-based Word Sense Disambiguation", Tsatsaronis, Varlamis, and Nørvåg

23/22