Semantic Relatedness Hits Bibliographical Data

WIDM'09

November 2, 2009, Hong Kong

George Tsatsaronis,

Department of Computer and Information Science Norwegian University of Science and Technology (**NTNU**) e-mail: <u>gbt@aueb.gr</u>

Iraklis Varlamis,

Department of Informatics and Telematics Harokopio University Athens (**HUA**) e-mail: <u>varlamis@hua.gr</u>

Sofia Stamou,

Computer Engineering and Informatics Department University of Patras e-mail: <u>stamou@ceid.upatras.gr</u>

Kjetil Nørvåg,

Department of Computer and Information Science Norwegian University of Science and Technology (**NTNU**) e-mail: <u>Kjetil.Norvag@idi.ntnu.no</u>

Michalis Vazirgiannis,

Department of Informatics Athens University of Economics and Business (**AUEB**) e-mail: <u>mvazirg@aueb.gr</u>

- Problem and Motivation
- Summary of Contribution
- Defining a Measure of Semantic Relatedness
 - SR Definition
 - OMIOTIS Definition
- Bibliographical Data Classification
- Bibliographical Data Clustering
- Identification of Related Scientific Communities
- Conclusions and Future Work

Problem and Motivation

- In several text related applications (text retrieval, classification, paraphrasing), exact keyword matching misses much information.
 - **Example 1** Paraphrase Detection
 - Sentence 1: "The shares of the company dropped 14 cents"
 - Sentence 2: "The organization's stock slumped 14 cents"
 - > Sentence 1 is a paraphrase of sentence 2.
 - share is synonym to stock
 - drop is synonym to slump
 - organization is semantically related to company
- In bibliographical data, different terminology used creates even greater problems.
 - Example 2 Web Search
 - Query: "search engine log analysis"
 - Semantically related queries: "study of web transactions", "web queries log analysis", etc.

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 3/22

Presentation Layout

- Problem and Motivation
- Summary of Contribution ←
- Defining a Measure of Semantic Relatedness
 - SR Definition
 - OMIOTIS Definition
- Bibliographical Data Classification
- Bibliographical Data Clustering
- Identification of Related Scientific Communities
- Conclusions and Future Work

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 5/22

Summary of Contribution

- A novel measure of semantic relatedness between text segments
- Embedding into bibliographical data classification and clustering
- Empirical evaluation shows clear improvement over traditional term matching techniques
- Novel implementation of the Omiotis semantic relatedness measure
 - all WordNet pair-wise synset relatedness values indexed in a database (11 billion combinations, 600 GB of data, ~1 sec for retrieving 100 term-pair relatedness values)

Presentation Layout

- Problem and Motivation
- Summary of Contribution
- Defining a Measure of Semantic Relatedness ←
 - SR Definition
 - OMIOTIS Definition
- Bibliographical Data Classification
- Bibliographical Data Clustering
- Identification of Related Scientific Communities
- Conclusions and Future Work

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 7/22

OMIOTIS: A Thesaurus-based

measure of Semantic Relatedness

- OMIOTIS is a dictionary-based measure of semantic relatedness.
- It does not require any type of training. It relies in the use of WordNet.
- For the first time, the following important factors are considered in tandem:
 - Semantic path length
 - Depth of senses comprising the path
 - Importance of the semantic edge types
 - All of the available semantic information by WordNet is considered

SR: A Measure of Semantic Relatedness

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 9/22

SR Definition

For all paths between s_i , s_j we compute the product SMC·SPE, and we keep the maximum value found

$$SR(s_i, s_j) = \max(SCM(s_i, s_j) \bullet SPE(s_i, s_j))$$

Given two terms t_i , t_j we compute SR values for all their sense combinations, and we keep the maximum found

$$SR(t_i, t_j) = \max(SR(s_i, s_j))$$

We solve this problem with an altered Dijkstra algorithms and Fibonacci heaps.

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 11/22

Implementation and Complexity

- Index all pair-wise synset SR values in Microsoft SQL Server 2005 (11 billion)
- Dijkstra with Fibonacci heaps
- One-time cost. A DB of 600 GB created.
- Index all term-to-term SR values we meet
- Processing 100 term pairs takes approximately 1 second!

Synsets	Edges	Con. Synset Pairs	Avg In-Degree	Avg Out-Degree	Avg Fan-In	Avg Fan-Out
110,490	324,268	11,182,324,723	2.9933	2.9535	103,192.32	101,822.56

Demo available at: <u>http://omiotis.hua.gr</u>

Presentation Layout

- Problem and Motivation
- Summary of Contribution
- Defining a Measure of Semantic Relatedness
 - SR Definition
 - OMIOTIS Definition
- Bibliographical Data Classification ←
- Bibliographical Data Clustering
- Identification of Related Scientific Communities
- Conclusions and Future Work

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 13/22

DBLP Bibliographical Data Set

- Parsing of 7 conferences DBLP entries, for years 2006, 2007, and 2008
- Selected to cover various disciplines with potential interest overlap

	ECDL	ECML/PKDD	FOCS	SIGMOD	VLDB	SODA	KDD	Total
Training (2006)	69	149	71	99	136	136	126	786
Testing (2007 & 2008)	137	255	148	269	161	277	248	1,495

- k-nn used as classifier
- Comparison against
 - k-nn with VSM model and cosine
 - SVM with linear kernel
 - Naive Bayes

Classification Results

			7 Con	ference	s Data S	Set			3 Conferences Data Set							
	Cosine				Omiotis				VSM Cosine				Omiotis			
	Α	Р	R	F1	Α	Р	R	F1	Α	Р	R	F1	Α	Р	R	F1
k=1	0,23 [§]	0,396	0,197 [‡]	0,263 [§]	0,419	0,431	0,411	0,421	0,576 [§]	0,752	0,475	0,582 [‡]	0,75	0,762	0,727	0,743
k=3	0,237§	0,398	0,203‡	0,269 [§]	0,408	0,456	0,397	0,425	0,519 [§]	0,706	0,397†	0,508 [‡]	0,767	0,805	0,729	0,765
k=5	0,214 [§]	0,376	0,178 [§]	0,242 [§]	0,408	0,432	0,405	0,418	0,506 [§]	0,697	0,38†	0,492 [‡]	0,75	0,794	0,705	0,7461
k=10	0,105 [§]	0,387	0,082 [§]	0,136 [§]	0,428	0,448	0,42	0,434	0,544 [§]	0,736	0,43†	0,543‡	0,756	0,813	0,701	0,757
k=15	0,092 [§]	0,4	0,072 [§]	0,122 [§]	0,441	0,469	0,427	0,447	0,541 [§]	0,836	0,423†	0,561‡	0,713	0,8	0,653	0,719
k=20	0,135 [§]	0,384	0,104 [§]	0,164 [§]	0,444	0,464	0,429	0,445	0,485 [§]	0,826	0,35†	0,492 [‡]	0,693	0,78	0,627	0,696
k=25	0,156 [§]	0,361	0,116 [§]	0,176 [§]	0,439	0,456	0,425	0,441	0,472 [§]	0,157‡	0,333†	0,214‡	0,691	0,803	0,62	0,699
k=30	0,161 [§]	0,356	0,12 [§]	0,18 [§]	0,443	0,479	0,425	0,451	0,472 [§]	0,157‡	0,333†	0,214 [‡]	0,663	0,771	0,588	0,666
k=40	0,281 [§]	0,269†	0,216‡	0,24 [‡]	0,441	0,488	0,422	0,452	0,472 [§]	0,157‡	0,333†	0,214 [‡]	0,637	0,787	0,552	0,649
k=50	0,287 [§]	0,139 [‡]	0,218 [‡]	0,169†	0,43	0,474	0,406	0,438	0,472 [§]	0,157‡	0,333†	0,214 [‡]	0,633	0,812	0,545	0,652
k=60	0,264 [§]	0,124 [§]	0,2†	0,152 [‡]	0,429	0,488	0,406	0,443	0,472 [§]	0,157‡	0,333†	0,214 [‡]	0,615	0,824	0,519	0,637

7 Conferences Data Set							3 Conferences Data Set								
Support Vector Machines Naive Bayes				Support Vector Machines Naive Bayes											
Α	Р	R	F1	Α	Р	R	F1	Α	Р	R	F1	Α	Р	R	F1
0,406 [‡]	0,462	0,401	0,429	0,366 [§]	0,372†	0,39	0,381	0,687 [§]	0,804	0,615†	0,697 [‡]	0,694 [§]	0,737	0,709	0,722

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 15/22

- Problem and Motivation
- Summary of Contribution
- Defining a Measure of Semantic Relatedness
 - SR Definition
 - OMIOTIS Definition
- Bibliographical Data Classification
- Bibliographical Data Clustering ←
- Identification of Related Scientific Communities
- Conclusions and Future Work

Bibliographical Data Clustering

- Computed the table with all the pair-wise similarities between paper titles.
- Omi (all edges included in the graph), Omi2 and Omi3 (some edges prunned according to small thresholds) and Cos.
- Used rb graph clustering from the CLUTO suite
- Also compared against standard k-means with cosine

Similarity Table	Omi(rb)	Omi2(rb)	Omi3(rb)	Cos(rb)	Cos(k-means)
macro F1 Score	0.622	0.62	0.61	0.611	0.581‡

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 17/22

- Problem and Motivation
- Summary of Contribution
- Defining a Measure of Semantic Relatedness
 - SR Definition
 - OMIOTIS Definition
- Bibliographical Data Classification
- Bibliographical Data Clustering
- Identification of Related Scientific Communities ←
- Conclusions and Future Work

Identifying Related Scientific Communities

- Clustered researchers of two teams (INRIA, Max-Planck) into five groups (Hypergraph partitioning offered by hMetis suite)
- Omiotis groups together researchers from both teams, based on the semantic relevance of their works

Analysis based on co-authorship only

Cl. 1	Gagliardi, Galland, Simon, Sais, Chatalic, Rousset, Pernelle, Reynaud, Goasdoue, Ventos, Safar, Hamdi							
Cl. 2	Spaniol, Angelova, Qu, de Melo, Nakashole, Li, Pruski							
Cl. 3	Mazeika, Kasneci, Elbassuoni, Denev, Ramanath, Dague, Kharlamov, Armant, Ye							
Cl. 4	Dietz, Manolescu, Preda, Bourhis, Marinoiu, Mrabet, Zoupanos							
Cl. 5	Kacimi, Neumann, Theobald, Schenkel, Berberich, Parreira, Crecelius, Pan, Broschart, Sozio, Wang							

Analysis based on Omiotis only

Cl. 1	Sozio, Rousset, Sais, Pernelle, Reynaud, Chatalic, Simon, Gagliardi, Goasdoue, Ventos, Safar, Hamdi						
Cl. 2	Dietz, Kasneci, Elbassuoni, Qu, Ramanath, Kharlamov, Armant						
Cl. 3	Mazeika, de Melo, Nakashole, Wang, Bourhis, Marinoiu, Pruski, Galland						
Cl. 4	Neumann, Theobald, Schenkel, Berberich, Pan, Broschart, Manolescu, Dague, Preda, Zoupanos, Ye						
Cl. 5	Kacimi, Spaniol, Parreira, Crecelius, Angelova, Denev, Li, Mrabet						
Max-P	Max-Planck researchers in Italics, GEMO researchers in Bold						

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 19/22

- Problem and Motivation
- Summary of Contribution
- Defining a Measure of Semantic Relatedness
 - SR Definition
 - OMIOTIS Definition
- Bibliographical Data Classification
- Bibliographical Data Clustering
- Identification of Related Scientific Communities
- Conclusions and Future Work ←

Conclusions and Future Work

- Semantic information from word thesauri, like WordNet, can improve the quality of results in bibliographical data mining
- A prototype implementation of the proposed measure, allows for its incorporation in large-scale applications
- For the first time, all pair-wise WN synsets similarities are indexed
- Future Work:
 - Combine distributional similarity
 - Combine knowledge bases (e.g., Wikipedia, and WordNet, like in the case of YAGO)
 - Incorporate more properties on the graph clustering (e.g., cocitation analysis)

Semantic Relatedness Hits Bibliographical Data, George Tsatsaronis et al., WIDM'09, November 2, 2009, Hong Kong 21/22

Questions

Thank you very much for your attention!

Questions/Comments?