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Abstract. In this paper we present FGP, an algorithm that 

combines the powers of an association rule mining algorithm 
(FP-Growth) and a generalized pattern mining algorithm (GP-
Close) in order to efficiently generate rules from transaction 
data. Our Frequent Generalized Pattern (FGP) algorithm 
considers that all items that appear in a set of transactions, 
belong to categories organized in a taxonomy. It takes as input 
the transaction database and the taxonomy of categories and 
produces generalized association rules that contain transaction 
items and/or item categories. This algorithm is particularly 
useful for personalizing web sites with continuously updated 
content, such as, blog aggregators, or news portals. In this 
context, the transaction database contains user click-stream 
information and the hierarchy of item types is a thematic 
taxonomy of web pages. The algorithm generates frequent 
itemsets comprising of both web pages and categories. The 
results are used to generate association rules and consequently 
recommendations for the users. We experimentally evaluate the 
proposed algorithm using web log data collected from a 
newspaper web site. 

1. INTRODUCTION 
The role of recommendations is very important in everyday 
transactions. When buying a product, or reading a newspaper 
article, one would like to have recommendations on related 
items. To achieve this, recommendation engines first build a 
predictive model, by discovering itemsets or item sequences with 
high support among users. Recommendations are subsequently 
generated by matching new transaction patterns to the predictive 
model. Most current approaches in web personalization consider 
that a web site consists of a finite number of web pages and build 
their predictive models based on this assumption [10]. The Web, 
however, is a continuously evolving environment, and this 
assumption does no longer hold. Social networking structures, 
such as blog aggregators, and news portals are typical examples 
of this situation since their content is updated on a regular basis. 
As a result, the traditional, usage-based approach that takes as 
input the navigation paths recorded on the web page level is not 
as effective. Since most predictive models are based on frequent 
itemsets, the more recent a page is, the more difficult it is to 
become part of the recommendation set; at the same time, such 
pages are more likely to be of interest for the average user. This 
problem can be addressed by generalizing the page-level 
navigation patterns to a higher, aggregate level [3, 9].  

In this work, we address the aforementioned problem by 
modifying and combining two algorithms that have been 
proposed in different contexts. The first algorithm, FP-Growth 

[5], considers a database of user transactions that comprise one 
or more unordered items (itemsets) and a minimum support 
threshold. The algorithm processes the transaction database and 
mines the complete set of frequent itemsets (whose frequency 
surpasses the threshold). FP-Growth considers the support of 
each item in the set to be equal to one. We extend the algorithm 
so that it assigns different weights to every item in the set 
depending on its importance in the transaction. The algorithm 
considers no relation between items in the database, but this is 
not the case in the web, where items in a web site are 
(conceptually) hierarchically organized. This characteristic is 
tackled by the second algorithm, GP-Close [6, 7], that was 
proposed independently from FP-Growth. GP-Close considers a 
hierarchical organization of all items in the transaction database 
and uses this information to produce generalized patterns. The 
two algorithms are very efficient and solve many of the 
problems of pattern mining, such as the costly generation of 
candidate sets and the over-generalization of rules.  

In this paper, we combine the forces of the two algorithms in 
one efficient generalized pattern mining algorithm, which:  a) 
extends the main structure of FP-Growth, the FP-Tree, to include 
weight information about items, thus producing a weighted FP-
Tree (WFP-Tree) and, b) addresses the problem of continuously 
updated content by using the WFP-Tree and the taxonomic 
information about a web site's content  as input to the GP-Close 
algorithm, and generates generalized recommendations. We 
experimentally evaluate our approach using web log data and 
content collected from a newspaper's web site.  

The paper is organized as follows. First, we provide an 
overview of the related research in the area of pattern and 
association rule mining, as well as in the area of personalizing 
news sites. We briefly describe the fundamentals of the FP-
Growth and GP-Close algorithms, and we present the details of 
the FGP algorithm in Sections 3 and 4 respectively. In Section 5, 
we discuss a proof-of-concept implementation and present 
preliminary experimental results. We conclude with our plans for 
future work in Section 6.  

2. RELATED WORK 
Numerous approaches exist that address the problem of 
personalizing a web site. An extensive overview can be found in 
[10]. Here we overview those that generalize the predicted 
patterns using a hierarchy. 

The problem with sites such as blogs or news portals, is that 
their content is continuously updated. Moreover, in the case of 
blog aggregators we have less control on the tags assigned to 
each item. Since they do not belong to a hierarchy we need to 
put extra effort to assign them to a hierarchy node (i.e. using 



semantic relatedness between the tags and the node [13]). Some 
approaches are based on the preference information explicitly 
provided by the users [2, 4]. However, users' interests change 
from time to time. In the existence of this concept-drift issue, 
either web users should continuously update their preferences, or 
the system will eventually fail to present useful, personalized 
recommendations. We can see that this is a situation analogous 
to the cold-start problem, that appears when a system should 
make predictions in the absence of any transaction history. The 
cold-start problem has been addressed mainly in the context of 
collaborative filtering systems [8, 12], by creating hybrid 
recommender systems that take into account both the content of 
the site and the user ratings or profiles. When there are is not 
adequate user-based information, similarities between the 
content can be used to make predictions. The idea of integrating 
the content in the recommendation process has also been 
addressed by generalizing the page-level navigation patterns to a 
higher, aggregate level, with the aid of a topic hierarchy. In a 
previous work, we have proposed the mapping of all user 
sessions to the topics of a hierarchy [3]. Those generalized 
sessions were then used as input to the Apriori algorithm [1], in 
order to generate category-based recommendations. In [11], the 
authors proposed a similar framework for semantic web sites, 
where the content was annotated using an ontology. This 
framework focused on web mining instead of personalization 
tasks. In [9] an approach focusing on recommending academic 
research papers was proposed. The authors mapped the user 
profiles as well as the research papers to ontology terms, and 
input those data in a collaborative filtering recommender. 
Considering the shortcomings of this technique, which are lack 
of scalability and data sparsity [10], we opted for an association 
rule mining algorithm. As compared to Apriori or its extensions, 
AprioriTid and AprioriHybrid [1], the FP-Growth algorithm is 
more efficient in that it does not generate candidate itemsets, but 
rather adopts a pattern-fragment growth method. Moreover, we 
use the topic hierarchy as an inherent component of our 
algorithm, and adapt the GP-Close mechanism in order to 
produce generalized recommendations. It is important to note 
that, compared to previous techniques our recommendations 
include a combination of pages and page categories. 

3. FP-GROWTH AND GP-CLOSE  
3.1. The FP-Growth algorithm 
The details of the FP-Growth algorithm can be found in the 
related bibliography [5]. In the following we present its basic 
steps using a running example. This same example is employed 
in order to demonstrate the differences between FP-Growth and 
our algorithm, FGP. 

In the first step FP-Growth scans the transaction database, 
finds all frequent items (minimum support is 3 in our example) 
and orders them in descending frequency order. In a second 
database scan, the FP-tree is constructed. Each transaction is 
mapped to a path in the FP-tree. For the items already in the tree, 
the count of the respective nodes in the path is updated, whereas 
new nodes are added for the remaining items. For items 
belonging to more than one frequent itemsets, all their 
appearances in the tree are linked. An index table containing all 
frequent items sorted in descending global frequency order, 
points to the first appearance of each item in the FP-tree. The 

FP-Tree resulting from the transaction database of Table 1 is 
shown in Figure 1. 

TID Itemset Ordered frequent items 
(min freq=3) 

100 f, a, c, a, d, g, i, a, m, c, p f, c, a, m, p 
200 a, b, c, f, c, l, a, m, o f, c, a, b, m 
300 b, f, h, j, o, f f, b 
400 b, c, k, s, p, c, b c, b, p 
500 a, c, f, c, e, l, f, p, m, n, a f, c, a, m, p 

Table 1. A sample transaction database. 

 
Figure 1. The steps of constructing an FP-Tree. 

As proven in [5], the FP-Tree is adequate for mining frequent 
patterns and can replace the database. In order to compute the 
support of a k-itemset, FP-Growth starts scanning the tree for the 
less frequent items in the set. The items in the path from the root 
to the item under examination form the conditional pattern base 
of the item and their support equals the support of the item under 
examination (count adjustment). Table 2 contains the conditional 
pattern base for the FP-Tree in Figure 1. 

Item Conditional pattern base Conditional FP-Tree 
p {fcam:2, cb:1} {c:3}|p 
m {fca:2, fcab:1} {f:3, c:3, a:3}|m 
b {fca:1, f:1, c:1} {} 
a {fc:3} {f:3, c:3}|a 
c {f:3} {f:3}|c 
f {} {} 

Table2. The conditional pattern base and FP-tree. 

3.2. The GP-Close algorithm 
The GP-Close algorithm takes as input a transaction database DB 
and a taxonomy T, containing all items of DB. Using a minimum 
support threshold, it generates a tree GT that contains all the 
generalized frequent item-sets. Children of a node in the GT 
expand their parent item-set by adding one item. 
The first step of the algorithm is to locate all frequent 1-itemsets 
and generate all their frequent generalizations by looking up to 
T. After sorting them in a support increasing manner, it gradually 
expands them to n-itemsets, by combining smaller sets and 
updating support count. Two pruning techniques prevent from 
exploring unnecessary combinations: the Subtree pruning and 
the Child pruning. The details of the algorithm and an 
explanation of the pruning techniques are available in [6]. 

4. THE FGP ALGORITHM  
Consider that all items in the transaction database of Table 1 are 
articles in a news site and that the taxonomy of topics depicted in 
Figure 2 exists for this site (numbers correspond to topic ids, and 



letters to article ids). For simplicity, we consider that each article 
belongs to a single topic. 

 
Figure 2. The taxonomy of items 

4.1. Pre-processing: item weighting  
We should point out that the information we store in the FP-Tree 
differs from that of the original implementation. In the original 
paper [5], each transaction identifier (TID) stores only one 
occurrence for each node. However, in the case of web log files, 
a user might visit a Web page more than once during a session. 
Repetitiveness signifies the importance of a page for a specific 
user, thus the input format is modified to include <pageID, 
weight, support> triplets, instead of merely pageID information. 

Although a page’s importance in a session depends on the 
number of repetitive visits, its importance in the whole database 
is related to the number of distinct sessions it appears in. Thus, 
analogous to term weighting in document collections (tf/idf), we 
consider the weight of a page in a session to be the number of its 
appearances in the session divided by the total number of page 
hits in the session (page frequency) and the support of a page to 
be the number of sessions that contain this page (inverse session 
frequency). 

TID Session items (PID, hits) Hits/session 
100 (a,3), (c,2), (f,1), (d,1), (g,1), (i,1), (m,1), (p,1) 11 
200 (a,2), (c,2), (b,1), (f,1), (l,1), (m,1), (o,1) 9 
300 (f,2), (b,1), (h,1), (j,1), (o,1) 6 
400 (b,2), (c,2), (k,1), (s,1), (p,1) 7 
500 (a,2), (f,2), (c,2), (e,1), (l,1), (p,1), (m,1), (n,1) 11 

Table3. The web log entries grouped by session 

The result of this processing for Table 1 is depicted in Table 3, 
which is consequently mapped to the WFP-Tree.  

4.2.The FGP Algorithm 
The FGP algorithm takes as input a transaction database (as in 
Table 3) and a hierarchy (as in Figure 2) and constructs a set of 
generalized association rules as follows: 

1) Scans the transaction database and constructs the WFP-Tree 
2) Finds frequent 1-itemsets using the WFP-Tree 
3) Creates frequent generalized 1-itemsets using the hierarchy 

a) Sorts 1-itemsets in increasing support order 
b) Prunes Children: While creating the generalization tree 

prunes 1-item generalizations that have support equal to a 
frequent 1-itemset already in the tree  

4) Combines 1-itemsets to generate the complete generalized 
itemsets tree. 
a) Prunes subtrees: If a n-itemset A can be subsumed by an 

identified k-itemset B already in the tree with n⊂ k and 
support(A)<=support(B) then A and its corresponding 
subtree is pruned. 

In what follows, we use the running example of Section 3 to 
demonstrate the various steps of the proposed algorithm. 

4.2.1 Construction of the WFP-Tree  

For constructing the WFP-Tree we parse the transaction database 
and calculate the weight of each individual page in a transaction. 
We aggregate the weights of the remaining page ids and store a 
reference to the header table. Transactions are stored in 
decreasing weight order. The resulting WFP-Tree for the 
database in Table 3 is depicted in Figure 3 and is used instead of 
the transaction database in the remaining steps of the algorithm.   

 
Figure 3. The Weighted FP-Tree 

4.2.2 Find frequent 1-itemsets and their generalizations  
The header table, which accompanies the WFP-Tree contains 
references to every page in the tree. We use this table and the 
taxonomic information presented in Figure 2, in order to find 
frequent 1-itemsets and to produce the corresponding frequent 
generalized 1-itemsets. These itemsets are, in essence, the 
frequently visited categories in the database. 
 Since categories correspond to more than one page, in order 
to find the total weight for each category (internal node in the 
taxonomy tree) we find all the corresponding pages (leaf nodes) 
in the taxonomy tree. We then process the index file, from 
bottom to top, in order to locate all the appearances of the leaf 
nodes in the WFP-Tree and sum their weights.  

For computing the support of a topic (i.e. the number of 
transactions that contain at least one page from this topic), we 
examine all appearances of the corresponding pages in the WFP-
Tree. Transactions that contain many pages from the same topic, 
are counted only once in the support of this topic.  

For example, the support for category 11 is computed based 
on pages j, b and a. First we aggregate the appearances of j (1), 
which is lower in the index table, then of b (1+1 + 1-1, due to j) 
and consequently those of a (3-1 since b has been added). The 
total support for category 11 is consequently 5, which 
corresponds to the number of transactions that contain at least 
one of {j, b, a}. The weight of 11 is 1.42, which is the sum of the 
weights of j, b and a. 

4.2.3 Prune 1-itemset generalizations 
In this step we prune 1-itemsets and consequently their 
generalizations, when they do not have high support (e.g. 
support < 3 in our example).  



Furthermore, in order to avoid the combinatorial explosion of 
the GP-Close when it searches for all frequent n-itemsets, we 
prune those frequent 1-item generalizations that have the same 
support as their specializations. For example, the support of 
category 37, comprising pages f and g is 4, which equals to the 
support of f. As a result the generalization of 37 is pruned from 
the final tree and so do all the combinations of 37. 

In order to prune the frequent 1-item generalizations we sort 
all frequent 1-itemsets in increasing support order. If a 
generalization has the same support with its specialization, then 
it is pruned from the tree. The first level of the tree containing 
the frequent generalized 1-itemsets appears in Figure 4. 

 
Figure 4. Frequent generalized 1-itemsets  

4.2.4 Find frequent k-itemsets  
We gradually combine the frequent 1-itemsets to produce larger 
sets. We compute their support and weight and prune sets that do 
not meet the minimum support requirements. The support for the 
itemset K is computed over the WFP-Tree as follows: 

Suppose that Lz is the set of all leaf nodes for item z. Of 
course, if z is a page then Lz={z}. 

 

1.construct }{ zLLS = : Kz∈∀  supportK=0 

2.for LSL ∈1 , the first set of pages in LS 

3. 1Li∈∀ find ALLi : all appearances of i  in WFP-Tree 

4. ALLx ii ∈∀  if contain(subnodes(ix) ,LS-L1)  

    then supportK=supportK+supportlast 
 

where the method contain() parses the list of subnodes of ix 
until at least a page from  all the sets in (LS-L1) is found, and 
supportlast is the support of the last page checked. If we have 
reached the end of a subnodes list and we have not found a page 
for every set then supportlast=0. 

For example, if K={f, 24} then LS={{f},{p,l}}. We check all 
appearances of f and search for either p or l in the sub node lists. 
The support for K is 1 (the support of left shaded m in figure 3) 
plus 2 (the support of the right shaded m in figure 3) plus 0 (the 
rightmost f does not contain p or l in its node list). A support of 3 
is above the minimum threshold in our example, so {f,24} is a 
frequent 2-itemset. The weight of this itemset is the aggregate of 
the weights of all WFP-Tree nodes involved in the support 
counting (0.38+0.11+0.11+0.09+0.09=0.88). 

4.2.5 Prune redundant subtrees 
It is obvious that certain combinations will be pruned due to 
insufficient support. For example, a scan in the WFP-Tree gives 
to {m,p} a support of 2, which is unacceptable. Thus, {m,p} and 
its subtree are directly pruned. All the 2-itemsets generated for 
{m} are listed in Figure 5.  

 
Figure 5. Create the 2-itemsets for the first 1-itemset 

A second pruning strategy is applied in this step. According to 
this, when a k-itemset has equal support to a (k+1)-itemset and is 
a subset of this itemset then it is a subsumed one and must be 
pruned. For example, the shaded node a in figure 5 is pruned. 

This strategy further reduces the combinations to check in the 
next expansion step. 

The complete expansion of the first 1-itemset results in 
pruning most of the n-itemsets created (n>1). Figure 6 illustrates 
the result of this expansion, where all shaded nodes are pruned. 
Expansion continues with the remaining 1-itemsets.  

 
Figure 6. Expansion of the first 1-itemset and subtree pruning 

When the tree of sets cannot be further expanded, each node 
in the tree is exported as a frequent k-itemset, which can be used 
as a rule for recommendation. 

4.2.6 Generate recommendations 
The frequent k-itemsets are subsequently used to generate 

recommendations for an active user A. Given that A’s navigation 
history includes (k-r) items from a specific k-itemset, the system 
selects and recommends the remaining items. r is a parameter of 
the system and can take integer values between 1 and k. In the 
case that the predicted item is a category, the system can provide 
a top-n list of the pages that belong to this category. The criteria 
for the selection can be the page popularity, its recency, etc.  

5.EXPERIMENTAL EVALUATION 
5.1 Performance testing 
In order to evaluate the performance of the FGP algorithm we 
test it over the web log files of a news site (www.reporter.gr), 
collected over a 31 days’ period (August 2006). We preprocess 
the log files in order to clean them from noisy entries (bot 
entries, invalid requests etc.) and then sessionize them. The log 
file of a day takes the form of the transaction database presented 
in Table 3. Each page in the web site belongs to a topic and the 
hierarchy of topics is used as input to our algorithm.  

In average users perform 8708 article hits per day in 882 
sessions. The average session comprises of 8.5 pages. FGP 
algorithm takes 17 seconds in average to process the log file of a 
day and produces 56 generalized frequent k-itemsets in average 
(k>=2). The number of itemsets is bigger compared to those 
produced by FP-Growth (7 in average for the same transaction 
set). This shows that FGP is able to generate more itemsets. 
Moreover, the two pruning strategies avoid redundancies and 
accelerate the tree creation.  
 
5.2 Validity of results 
The output of the FGP algorithm is a set of frequent k-itemsets, 
each one associated with a weight and a support score. A 
recommendation engine can use these frequent k-itemsets against 
web usage patterns: when a user's pattern matches the (k-1) items 



in the set, then the k-th item is suggested to the user, as a 
recommended hyperlink. The recommendation is considered 
successful if the user clicks on the hyperlink. 

We measure the accuracy of the recommendations generated 
by FGP as follows: we produce frequent k-itemsets by applying 
FGP to the log file of a certain day and evaluate the rules against 
the web log file of the day after that. We repeat the same process 
for every pair of consecutive days and find the average values, 
performing in essence a 30-fold cross-validation. We validate the 
itemsets produced from one day's logs only against the logs of 
the subsequent day, since the life of article ids in the logs is short 
and rules containing solely article ids will have limited support.  

In the experiments, we do not use itemsets' support and weight 
information when counting for sessions matching an itemset. 

We define the session coverage (SC) of a set of rules (frequent 
k-itemsets) measured against a set of sessions as the number of 
sessions that match at least one rule in the set divided by the total 
number of sessions, as shown in formula (1). 

                           sallSession
onsvalidSessiSC =                              (1) 

The results of our experiments are depicted in Figure 7. The 
horizontal axis corresponds to the day used for generating the 
frequent k-itemsets and the vertical axis shows the percentage of 
sessions that match at least one rule (session coverage). The 
results in Figure 7 show that the coverage of the generalized 
itemsets is larger than that of page-level ones. The average 
coverage for generalized itemsets produced by FGP is almost 
20% (thick line in the graph), and it lowers into 12% when page-
level itemsets are only used (thin line). 

For those sessions that match to at least one rule we count the 
total number of rules being matched and present the average 
values per day in the graph of Figure 8. Values are strongly 
related to the size of the recommendation set since matching 
more rules means providing more useful recommendations to the 
end-users. The average number of rules, produced by FGP, that 
match a session for the complete dataset is approximately 12, 
whereas the value for FP-Growth is 5.  

6 CONCLUSIONS & FUTURE WORK 
In this paper, we presented the FGP algorithm, which takes as 
input a database of transactions comprising items in a hierarchy 
and the hierarchy of items, and produces the set of frequent k-
itemsets comprising items and/or categories from the hierarchy. 
The set consists of all itemsets above a minimum support 
threshold and their generalizations but omits redundant 
generalizations. In the current implementation we combined two 
state of the art algorithms: FP-Growth for frequent itemset 
creation and GP-Close for itemset generalization and pruning of 
redundancies. The performance evaluation of FGP proved that it 
is fast and produces many useful itemsets, while avoiding 
redundancies.  

An extensive evaluation of the algorithm, against other 
similar approaches, using more benchmark data sets is in our 
next plans. We are currently working on extending the algorithm 
to work with multiple category assignments for each item and 
for more complex hierarchies. This is typically the case of blog 
aggregator services, where content is provided by different 
authors and tagged using a variety of tags. We also design a 
user-based evaluation by implementing a recommendation 
engine for a news site which employs our algorithm. 
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Figure 7. Session coverage 
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Figure 8. Valid itemsets per session 
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