
Mining frequent generalized patterns for Web
personalization

Panagiotis Giannikopoulos Iraklis Varlamis Magdalini Eirinaki
University of Peloponnese,

Department of Computer Science and
Technology, Tripoli, Greece

cst04006@uop.gr

Athens University of Economics and Business,
Department of Informatics,

Athens, Greece
varlamis@aueb.gr

San Jose State University, Computer
Engineering Department,

San Jose, CA, US,
magdalini.eirinaki@sjsu.edu

Abstract. In this paper we present FGP, an algorithm that

combines the powers of an association rule mining algorithm
(FP-Growth) and a generalized pattern mining algorithm (GP-
Close) in order to efficiently generate rules from transaction
data. Our Frequent Generalized Pattern (FGP) algorithm
considers that all items that appear in a set of transactions,
belong to categories organized in a taxonomy. It takes as input
the transaction database and the taxonomy of categories and
produces generalized association rules that contain transaction
items and/or item categories. This algorithm is particularly
useful for personalizing web sites with continuously updated
content, such as, blog aggregators, or news portals. In this
context, the transaction database contains user click-stream
information and the hierarchy of item types is a thematic
taxonomy of web pages. The algorithm generates frequent
itemsets comprising of both web pages and categories. The
results are used to generate association rules and consequently
recommendations for the users. We experimentally evaluate the
proposed algorithm using web log data collected from a
newspaper web site.

1. INTRODUCTION
The role of recommendations is very important in everyday
transactions. When buying a product, or reading a newspaper
article, one would like to have recommendations on related
items. To achieve this, recommendation engines first build a
predictive model, by discovering itemsets or item sequences with
high support among users. Recommendations are subsequently
generated by matching new transaction patterns to the predictive
model. Most current approaches in web personalization consider
that a web site consists of a finite number of web pages and build
their predictive models based on this assumption [10]. The Web,
however, is a continuously evolving environment, and this
assumption does no longer hold. Social networking structures,
such as blog aggregators, and news portals are typical examples
of this situation since their content is updated on a regular basis.
As a result, the traditional, usage-based approach that takes as
input the navigation paths recorded on the web page level is not
as effective. Since most predictive models are based on frequent
itemsets, the more recent a page is, the more difficult it is to
become part of the recommendation set; at the same time, such
pages are more likely to be of interest for the average user. This
problem can be addressed by generalizing the page-level
navigation patterns to a higher, aggregate level [3, 9].

In this work, we address the aforementioned problem by
modifying and combining two algorithms that have been
proposed in different contexts. The first algorithm, FP-Growth

[5], considers a database of user transactions that comprise one
or more unordered items (itemsets) and a minimum support
threshold. The algorithm processes the transaction database and
mines the complete set of frequent itemsets (whose frequency
surpasses the threshold). FP-Growth considers the support of
each item in the set to be equal to one. We extend the algorithm
so that it assigns different weights to every item in the set
depending on its importance in the transaction. The algorithm
considers no relation between items in the database, but this is
not the case in the web, where items in a web site are
(conceptually) hierarchically organized. This characteristic is
tackled by the second algorithm, GP-Close [6, 7], that was
proposed independently from FP-Growth. GP-Close considers a
hierarchical organization of all items in the transaction database
and uses this information to produce generalized patterns. The
two algorithms are very efficient and solve many of the
problems of pattern mining, such as the costly generation of
candidate sets and the over-generalization of rules.

In this paper, we combine the forces of the two algorithms in
one efficient generalized pattern mining algorithm, which: a)
extends the main structure of FP-Growth, the FP-Tree, to include
weight information about items, thus producing a weighted FP-
Tree (WFP-Tree) and, b) addresses the problem of continuously
updated content by using the WFP-Tree and the taxonomic
information about a web site's content as input to the GP-Close
algorithm, and generates generalized recommendations. We
experimentally evaluate our approach using web log data and
content collected from a newspaper's web site.

The paper is organized as follows. First, we provide an
overview of the related research in the area of pattern and
association rule mining, as well as in the area of personalizing
news sites. We briefly describe the fundamentals of the FP-
Growth and GP-Close algorithms, and we present the details of
the FGP algorithm in Sections 3 and 4 respectively. In Section 5,
we discuss a proof-of-concept implementation and present
preliminary experimental results. We conclude with our plans for
future work in Section 6.

2. RELATED WORK
Numerous approaches exist that address the problem of
personalizing a web site. An extensive overview can be found in
[10]. Here we overview those that generalize the predicted
patterns using a hierarchy.

The problem with sites such as blogs or news portals, is that
their content is continuously updated. Moreover, in the case of
blog aggregators we have less control on the tags assigned to
each item. Since they do not belong to a hierarchy we need to
put extra effort to assign them to a hierarchy node (i.e. using

semantic relatedness between the tags and the node [13]). Some
approaches are based on the preference information explicitly
provided by the users [2, 4]. However, users' interests change
from time to time. In the existence of this concept-drift issue,
either web users should continuously update their preferences, or
the system will eventually fail to present useful, personalized
recommendations. We can see that this is a situation analogous
to the cold-start problem, that appears when a system should
make predictions in the absence of any transaction history. The
cold-start problem has been addressed mainly in the context of
collaborative filtering systems [8, 12], by creating hybrid
recommender systems that take into account both the content of
the site and the user ratings or profiles. When there are is not
adequate user-based information, similarities between the
content can be used to make predictions. The idea of integrating
the content in the recommendation process has also been
addressed by generalizing the page-level navigation patterns to a
higher, aggregate level, with the aid of a topic hierarchy. In a
previous work, we have proposed the mapping of all user
sessions to the topics of a hierarchy [3]. Those generalized
sessions were then used as input to the Apriori algorithm [1], in
order to generate category-based recommendations. In [11], the
authors proposed a similar framework for semantic web sites,
where the content was annotated using an ontology. This
framework focused on web mining instead of personalization
tasks. In [9] an approach focusing on recommending academic
research papers was proposed. The authors mapped the user
profiles as well as the research papers to ontology terms, and
input those data in a collaborative filtering recommender.
Considering the shortcomings of this technique, which are lack
of scalability and data sparsity [10], we opted for an association
rule mining algorithm. As compared to Apriori or its extensions,
AprioriTid and AprioriHybrid [1], the FP-Growth algorithm is
more efficient in that it does not generate candidate itemsets, but
rather adopts a pattern-fragment growth method. Moreover, we
use the topic hierarchy as an inherent component of our
algorithm, and adapt the GP-Close mechanism in order to
produce generalized recommendations. It is important to note
that, compared to previous techniques our recommendations
include a combination of pages and page categories.

3. FP-GROWTH AND GP-CLOSE
3.1. The FP-Growth algorithm
The details of the FP-Growth algorithm can be found in the
related bibliography [5]. In the following we present its basic
steps using a running example. This same example is employed
in order to demonstrate the differences between FP-Growth and
our algorithm, FGP.

In the first step FP-Growth scans the transaction database,
finds all frequent items (minimum support is 3 in our example)
and orders them in descending frequency order. In a second
database scan, the FP-tree is constructed. Each transaction is
mapped to a path in the FP-tree. For the items already in the tree,
the count of the respective nodes in the path is updated, whereas
new nodes are added for the remaining items. For items
belonging to more than one frequent itemsets, all their
appearances in the tree are linked. An index table containing all
frequent items sorted in descending global frequency order,
points to the first appearance of each item in the FP-tree. The

FP-Tree resulting from the transaction database of Table 1 is
shown in Figure 1.

TID Itemset Ordered frequent items
(min freq=3)

100 f, a, c, a, d, g, i, a, m, c, p f, c, a, m, p
200 a, b, c, f, c, l, a, m, o f, c, a, b, m
300 b, f, h, j, o, f f, b
400 b, c, k, s, p, c, b c, b, p
500 a, c, f, c, e, l, f, p, m, n, a f, c, a, m, p

Table 1. A sample transaction database.

Figure 1. The steps of constructing an FP-Tree.

As proven in [5], the FP-Tree is adequate for mining frequent
patterns and can replace the database. In order to compute the
support of a k-itemset, FP-Growth starts scanning the tree for the
less frequent items in the set. The items in the path from the root
to the item under examination form the conditional pattern base
of the item and their support equals the support of the item under
examination (count adjustment). Table 2 contains the conditional
pattern base for the FP-Tree in Figure 1.

Item Conditional pattern base Conditional FP-Tree
p {fcam:2, cb:1} {c:3}|p
m {fca:2, fcab:1} {f:3, c:3, a:3}|m
b {fca:1, f:1, c:1} {}
a {fc:3} {f:3, c:3}|a
c {f:3} {f:3}|c
f {} {}

Table2. The conditional pattern base and FP-tree.

3.2. The GP-Close algorithm
The GP-Close algorithm takes as input a transaction database DB
and a taxonomy T, containing all items of DB. Using a minimum
support threshold, it generates a tree GT that contains all the
generalized frequent item-sets. Children of a node in the GT
expand their parent item-set by adding one item.
The first step of the algorithm is to locate all frequent 1-itemsets
and generate all their frequent generalizations by looking up to
T. After sorting them in a support increasing manner, it gradually
expands them to n-itemsets, by combining smaller sets and
updating support count. Two pruning techniques prevent from
exploring unnecessary combinations: the Subtree pruning and
the Child pruning. The details of the algorithm and an
explanation of the pruning techniques are available in [6].

4. THE FGP ALGORITHM
Consider that all items in the transaction database of Table 1 are
articles in a news site and that the taxonomy of topics depicted in
Figure 2 exists for this site (numbers correspond to topic ids, and

letters to article ids). For simplicity, we consider that each article
belongs to a single topic.

Figure 2. The taxonomy of items

4.1. Pre-processing: item weighting
We should point out that the information we store in the FP-Tree
differs from that of the original implementation. In the original
paper [5], each transaction identifier (TID) stores only one
occurrence for each node. However, in the case of web log files,
a user might visit a Web page more than once during a session.
Repetitiveness signifies the importance of a page for a specific
user, thus the input format is modified to include <pageID,
weight, support> triplets, instead of merely pageID information.

Although a page’s importance in a session depends on the
number of repetitive visits, its importance in the whole database
is related to the number of distinct sessions it appears in. Thus,
analogous to term weighting in document collections (tf/idf), we
consider the weight of a page in a session to be the number of its
appearances in the session divided by the total number of page
hits in the session (page frequency) and the support of a page to
be the number of sessions that contain this page (inverse session
frequency).

TID Session items (PID, hits) Hits/session
100 (a,3), (c,2), (f,1), (d,1), (g,1), (i,1), (m,1), (p,1) 11
200 (a,2), (c,2), (b,1), (f,1), (l,1), (m,1), (o,1) 9
300 (f,2), (b,1), (h,1), (j,1), (o,1) 6
400 (b,2), (c,2), (k,1), (s,1), (p,1) 7
500 (a,2), (f,2), (c,2), (e,1), (l,1), (p,1), (m,1), (n,1) 11

Table3. The web log entries grouped by session

The result of this processing for Table 1 is depicted in Table 3,
which is consequently mapped to the WFP-Tree.

4.2.The FGP Algorithm
The FGP algorithm takes as input a transaction database (as in
Table 3) and a hierarchy (as in Figure 2) and constructs a set of
generalized association rules as follows:

1) Scans the transaction database and constructs the WFP-Tree
2) Finds frequent 1-itemsets using the WFP-Tree
3) Creates frequent generalized 1-itemsets using the hierarchy

a) Sorts 1-itemsets in increasing support order
b) Prunes Children: While creating the generalization tree

prunes 1-item generalizations that have support equal to a
frequent 1-itemset already in the tree

4) Combines 1-itemsets to generate the complete generalized
itemsets tree.
a) Prunes subtrees: If a n-itemset A can be subsumed by an

identified k-itemset B already in the tree with n⊂ k and
support(A)<=support(B) then A and its corresponding
subtree is pruned.

In what follows, we use the running example of Section 3 to
demonstrate the various steps of the proposed algorithm.

4.2.1 Construction of the WFP-Tree

For constructing the WFP-Tree we parse the transaction database
and calculate the weight of each individual page in a transaction.
We aggregate the weights of the remaining page ids and store a
reference to the header table. Transactions are stored in
decreasing weight order. The resulting WFP-Tree for the
database in Table 3 is depicted in Figure 3 and is used instead of
the transaction database in the remaining steps of the algorithm.

Figure 3. The Weighted FP-Tree

4.2.2 Find frequent 1-itemsets and their generalizations
The header table, which accompanies the WFP-Tree contains
references to every page in the tree. We use this table and the
taxonomic information presented in Figure 2, in order to find
frequent 1-itemsets and to produce the corresponding frequent
generalized 1-itemsets. These itemsets are, in essence, the
frequently visited categories in the database.
 Since categories correspond to more than one page, in order
to find the total weight for each category (internal node in the
taxonomy tree) we find all the corresponding pages (leaf nodes)
in the taxonomy tree. We then process the index file, from
bottom to top, in order to locate all the appearances of the leaf
nodes in the WFP-Tree and sum their weights.

For computing the support of a topic (i.e. the number of
transactions that contain at least one page from this topic), we
examine all appearances of the corresponding pages in the WFP-
Tree. Transactions that contain many pages from the same topic,
are counted only once in the support of this topic.

For example, the support for category 11 is computed based
on pages j, b and a. First we aggregate the appearances of j (1),
which is lower in the index table, then of b (1+1 + 1-1, due to j)
and consequently those of a (3-1 since b has been added). The
total support for category 11 is consequently 5, which
corresponds to the number of transactions that contain at least
one of {j, b, a}. The weight of 11 is 1.42, which is the sum of the
weights of j, b and a.

4.2.3 Prune 1-itemset generalizations
In this step we prune 1-itemsets and consequently their
generalizations, when they do not have high support (e.g.
support < 3 in our example).

Furthermore, in order to avoid the combinatorial explosion of
the GP-Close when it searches for all frequent n-itemsets, we
prune those frequent 1-item generalizations that have the same
support as their specializations. For example, the support of
category 37, comprising pages f and g is 4, which equals to the
support of f. As a result the generalization of 37 is pruned from
the final tree and so do all the combinations of 37.

In order to prune the frequent 1-item generalizations we sort
all frequent 1-itemsets in increasing support order. If a
generalization has the same support with its specialization, then
it is pruned from the tree. The first level of the tree containing
the frequent generalized 1-itemsets appears in Figure 4.

Figure 4. Frequent generalized 1-itemsets

4.2.4 Find frequent k-itemsets
We gradually combine the frequent 1-itemsets to produce larger
sets. We compute their support and weight and prune sets that do
not meet the minimum support requirements. The support for the
itemset K is computed over the WFP-Tree as follows:

Suppose that Lz is the set of all leaf nodes for item z. Of
course, if z is a page then Lz={z}.

1.construct }{ zLLS = : Kz∈∀ supportK=0

2.for LSL ∈1 , the first set of pages in LS

3. 1Li∈∀ find ALLi : all appearances of i in WFP-Tree

4. ALLx ii ∈∀ if contain(subnodes(ix) ,LS-L1)

 then supportK=supportK+supportlast

where the method contain() parses the list of subnodes of ix
until at least a page from all the sets in (LS-L1) is found, and
supportlast is the support of the last page checked. If we have
reached the end of a subnodes list and we have not found a page
for every set then supportlast=0.

For example, if K={f, 24} then LS={{f},{p,l}}. We check all
appearances of f and search for either p or l in the sub node lists.
The support for K is 1 (the support of left shaded m in figure 3)
plus 2 (the support of the right shaded m in figure 3) plus 0 (the
rightmost f does not contain p or l in its node list). A support of 3
is above the minimum threshold in our example, so {f,24} is a
frequent 2-itemset. The weight of this itemset is the aggregate of
the weights of all WFP-Tree nodes involved in the support
counting (0.38+0.11+0.11+0.09+0.09=0.88).

4.2.5 Prune redundant subtrees
It is obvious that certain combinations will be pruned due to
insufficient support. For example, a scan in the WFP-Tree gives
to {m,p} a support of 2, which is unacceptable. Thus, {m,p} and
its subtree are directly pruned. All the 2-itemsets generated for
{m} are listed in Figure 5.

Figure 5. Create the 2-itemsets for the first 1-itemset

A second pruning strategy is applied in this step. According to
this, when a k-itemset has equal support to a (k+1)-itemset and is
a subset of this itemset then it is a subsumed one and must be
pruned. For example, the shaded node a in figure 5 is pruned.

This strategy further reduces the combinations to check in the
next expansion step.

The complete expansion of the first 1-itemset results in
pruning most of the n-itemsets created (n>1). Figure 6 illustrates
the result of this expansion, where all shaded nodes are pruned.
Expansion continues with the remaining 1-itemsets.

Figure 6. Expansion of the first 1-itemset and subtree pruning

When the tree of sets cannot be further expanded, each node
in the tree is exported as a frequent k-itemset, which can be used
as a rule for recommendation.

4.2.6 Generate recommendations
The frequent k-itemsets are subsequently used to generate

recommendations for an active user A. Given that A’s navigation
history includes (k-r) items from a specific k-itemset, the system
selects and recommends the remaining items. r is a parameter of
the system and can take integer values between 1 and k. In the
case that the predicted item is a category, the system can provide
a top-n list of the pages that belong to this category. The criteria
for the selection can be the page popularity, its recency, etc.

5.EXPERIMENTAL EVALUATION
5.1 Performance testing
In order to evaluate the performance of the FGP algorithm we
test it over the web log files of a news site (www.reporter.gr),
collected over a 31 days’ period (August 2006). We preprocess
the log files in order to clean them from noisy entries (bot
entries, invalid requests etc.) and then sessionize them. The log
file of a day takes the form of the transaction database presented
in Table 3. Each page in the web site belongs to a topic and the
hierarchy of topics is used as input to our algorithm.

In average users perform 8708 article hits per day in 882
sessions. The average session comprises of 8.5 pages. FGP
algorithm takes 17 seconds in average to process the log file of a
day and produces 56 generalized frequent k-itemsets in average
(k>=2). The number of itemsets is bigger compared to those
produced by FP-Growth (7 in average for the same transaction
set). This shows that FGP is able to generate more itemsets.
Moreover, the two pruning strategies avoid redundancies and
accelerate the tree creation.

5.2 Validity of results
The output of the FGP algorithm is a set of frequent k-itemsets,
each one associated with a weight and a support score. A
recommendation engine can use these frequent k-itemsets against
web usage patterns: when a user's pattern matches the (k-1) items

in the set, then the k-th item is suggested to the user, as a
recommended hyperlink. The recommendation is considered
successful if the user clicks on the hyperlink.

We measure the accuracy of the recommendations generated
by FGP as follows: we produce frequent k-itemsets by applying
FGP to the log file of a certain day and evaluate the rules against
the web log file of the day after that. We repeat the same process
for every pair of consecutive days and find the average values,
performing in essence a 30-fold cross-validation. We validate the
itemsets produced from one day's logs only against the logs of
the subsequent day, since the life of article ids in the logs is short
and rules containing solely article ids will have limited support.

In the experiments, we do not use itemsets' support and weight
information when counting for sessions matching an itemset.

We define the session coverage (SC) of a set of rules (frequent
k-itemsets) measured against a set of sessions as the number of
sessions that match at least one rule in the set divided by the total
number of sessions, as shown in formula (1).

 sallSession
onsvalidSessiSC = (1)

The results of our experiments are depicted in Figure 7. The
horizontal axis corresponds to the day used for generating the
frequent k-itemsets and the vertical axis shows the percentage of
sessions that match at least one rule (session coverage). The
results in Figure 7 show that the coverage of the generalized
itemsets is larger than that of page-level ones. The average
coverage for generalized itemsets produced by FGP is almost
20% (thick line in the graph), and it lowers into 12% when page-
level itemsets are only used (thin line).

For those sessions that match to at least one rule we count the
total number of rules being matched and present the average
values per day in the graph of Figure 8. Values are strongly
related to the size of the recommendation set since matching
more rules means providing more useful recommendations to the
end-users. The average number of rules, produced by FGP, that
match a session for the complete dataset is approximately 12,
whereas the value for FP-Growth is 5.

6 CONCLUSIONS & FUTURE WORK
In this paper, we presented the FGP algorithm, which takes as
input a database of transactions comprising items in a hierarchy
and the hierarchy of items, and produces the set of frequent k-
itemsets comprising items and/or categories from the hierarchy.
The set consists of all itemsets above a minimum support
threshold and their generalizations but omits redundant
generalizations. In the current implementation we combined two
state of the art algorithms: FP-Growth for frequent itemset
creation and GP-Close for itemset generalization and pruning of
redundancies. The performance evaluation of FGP proved that it
is fast and produces many useful itemsets, while avoiding
redundancies.

An extensive evaluation of the algorithm, against other
similar approaches, using more benchmark data sets is in our
next plans. We are currently working on extending the algorithm
to work with multiple category assignments for each item and
for more complex hierarchies. This is typically the case of blog
aggregator services, where content is provided by different
authors and tagged using a variety of tags. We also design a
user-based evaluation by implementing a recommendation
engine for a news site which employs our algorithm.

0

20

40

60

80

0 10 20 30
Rule Set Number

Se
ss

io
ns

 (%
)

FGP FP-Grow th

Figure 7. Session coverage

0

10

20

30

40

50

60

0 10 20 30
Rule Set Number

Va
lid

at
in

g
R
ul

es

FGP FP-Grow th

Figure 8. Valid itemsets per session

REFERENCES
[1] R. Agrawal, R. Srikant, Fast Algorithms for Mining

Association Rules, VLDB(1994)
[2] E. Banos, I. Katakis, N. Bassiliades, G. Tsoumakas, I.

Vlahavas, PersoNews: A Personalized News Reader
Enhanced by Machine Learning and Semantic Filtering,
ODBASE (2006)

[3] M. Eirinaki, M. Vazirgiannis, I. Varlamis, Sewep: Using site
semantic and a Taxonomy to enhance the web personalization
process, KDD(2003)

[4] E. Gabrilovich, S. Dumais, E. Horvitz, Newsjunkie:
Providing Personalized Newsfeeds via Analysis of
Information Novelty, WWW (2004)

[5] J. Han, J.Pei, Y. Yin,R. Mao,Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree
Approach. Data Min. Knowl. Discov. 8, 1 (2004)

[6] T. Jiang, A.H. Tan, Mining RDF Metadata for Generalized
Association Rules, Database and Expert Systems
Applications, LNCS Vol. 4080 (2006)

 [7] T. Jiang, A. Tan, K. Wang, Mining Generalized
Associations of Semantic Relations from Textual Web
Content, TKDE, 19(2), (2007)

[8] X. Lam, T. Vu, T. Le, A. Duong, Addressing cold-start
problem in recommendation systems, ICUIMC (2008)

[9]S. Middleton, N. Shadbolt,D. De Roure, Ontological User
Profiling in Recommender Systems, TOIS, 22(1) (2004)

[10] B. Mobasher, Data Mining for Personalization. In The
Adaptive Web: Methods and Strategies of Web
Personalization, LNCS Vol. 4321(2007)

[11] D. Oberle, B. Berendt, A. Hotho, J. Gonzalez, Conceptual
User Tracking, AWIC (2003)

[12] A. Schein, A. Popescul, H. Lyle, Methods and Metrics for
Cold-Start Recommendations, SIGIR (2002)

[13] G. Tsatsaronis, I. Varlamis, M. Vazirgiannis, "Word Sense
Disambiguation with Semantic Networks", to appear in the
11th Int. Conf. on Text Speech and Dialog (2008).

