
USING XML AS A MEDIUM FOR DESCRIBING, MODIFYING AND 
QUERYING AUDIOVISUAL CONTENT STORED IN RELATIONAL 

DATABASE SYSTEMS 
 

Iraklis Varlamis1, Michalis Vazirgiannis2, Panagiotis Poulos3 
 

1,2) Dept of Informatics, 
 Athens University of Economics & 

Business, 
 Patision 76, 10434,  
Athens, HELLAS 

{varlamis,mvazirg}@aueb.gr 

3) Dept of Electrical and Computer Engineering 
National Technical University of Athens 

9, Iroon Polytechniou Str., 157 73, 
Athens, HELLAS 
ppoulos@otenet.gr 

 
 

ABSTRACT 
 
The digitization and annotation of audiovisual programs 
results in a huge amount of information that becomes 
useful only if it is properly organized and if the 
appropriate query mechanisms exist. Usually audiovisual 
information and meta-information is stored in relational 
database schemata that consist of decades of tables, 
relationships and constraints that complicate the 
information querying tasks. The PANORAMA* platform 
has been developed to cover needs for manipulating video 
information, by attaching meta-information for both audio 
and visual content of video sources. This paper presents 
this meta-information model and the database interface 
developed in terms of the PANORAMA platform. The 
model works as keystone in the creation of the database 
and the database interface implements a mechanism for 
converting XML documents to relational data. This 
mechanism allows information users to use a more 
understandable way to communicate with the database. 

 
 

1. INTRODUCTION 
 
Video companies are interested in digitization, annotation, 
and re-use of their audiovisual information. This process 
requires the co-operation of different applications that 
perform the different tasks under a common information 
model. To give an example, video annotating applications 
analyze and describe the contents of digitized videos. 
These descriptions are associated to the audiovisual 
content and are stored in a database so that they can be 
searched and re-used in other applications. It is desirable 
that the information exchanged among the different co-
operative applications has a common structure. In the case 
of PANORAMA, XML is used to model the exchanged 

information and XML-Schema [1] defines the structure of 
the information. This information model follows the 
MPEG-7 definition for video metadata and is described in 
[2]. Furthermore all the audiovisual information 
transferred among the users, annotators and administrators 
is stored in a relational database management system in 
order to be available to other applications that do not use 
XML. 

 
A digitized audiovisual program is associated to a set 

of meta-information such as contributors, technical 
specifications, existing copies of a program and 
maintenance state, descriptions of content etc. This meta-
information is equally important to the digitized 
audiovisual program itself. 

 
In order to cover this need for information storage and 

retrieval based on an easily understandable model, we 
developed a system where the interchanged information is 
expressed in XML and is centrally stored in an RDBMS. 
The system produces XML documents that contain meta-
information regarding the audiovisual content and can be 
easily viewed in a web browser. The system is developed, 
to allow the video source owner to apply syntactic and 
semantic information to digitized programs and store it in 
a database, and the end-user to search this information. 

 
In this paper focus is given on the database part of 

Panorama. A short description of the whole system 
architecture is performed and a more detailed analysis of 
the database component follows. 

 
Apart from the general requirements, a set of specific 

requirements for the database system have been addressed 
concerning support for distant (web) users running 

* The PANORAMA project was funded by the 
EPET framework for Research & Technology 



different operating systems and having different levels of 
access to the database. 
 

2. THE PLATFORM ARCHITECTURE 
 
2.1. Database 
 
The aim of the system was the development of a flexible 
interface for describing, modifying and querying video 
information that is stored in a relational database. The 
underlying DBMS in this case was Oracle 8i that supports 
multimedia data and handles efficiently the huge amount 
of data created by video decomposition and description 
process. Oracle Call Interface is used to communicate with 
the database, but an effort was made to create a database 
independent model, which will work with any underlying 
database management system using standard SQL 
commands. 
 
2.2. Web & Local Interface 
 
The whole annotation and query system, is supported by 
three applications:  
− a web based application that uses Active Server Pages 

technology to create a user interface for querying and 
presenting the database contents, 

− a local application developed in C++ that allows the 
media administrator to organize media and video 
content information into the database, 

− a local application developed in C++ to allow video 
annotators to work separately and save their work into 
files that are forwarded to the media administrator. 

 
The database is accessed directly only by web users 

and administrators, while annotators produces data to be 
stored in the database but have no direct access to it. The 
web application performs only select statements to the 
database while the media administrator’s application can 
perform insert, update, delete, select and in special cases 
create statements to the database. In addition to this, web 
application users need to have different access levels to 
the information stored in the database therefore several 
types of connection privileges are created. 

 
2.3. Database Interface 
 
The use of XML for modeling the information transferred 
among applications, offers application developers a 
common communication protocol, but also induces the 
need for an extra application that will interfere between 
the XML documents and the relational database. This 
application is implemented as a COM object developed in 
C++ and become available for both web based and local 
applications. A novelty for the system is that the 

information transferred among the applications follows a 
common model, an XML-Schema [2], which defines the 
structure of the information. This model is automatically 
mapped into a relational schema that is used to create, 
populate and query the database. 
 
2.4. XML 
 
The implemented data model is based on the directives of 
MPEG-7 [3] format for video metadata. The work of Jain 
and Hampapur [4] is also proved very useful in the 
development of our system. The emerging XML-Schema 
notation is used to express the structure of the information 
model. 

 
The use of XML conveys many advantages to the 

system: 
− It offers a common model for information 

representation 
− Information produced by annotators can be saved in 

XML files, which can be reviewed and corrected at any 
time before being sent to the media administrator. The 
content of an XML document can be easily read or 
modified using a simple text-editor and validated using 
the XML-Schema.  

− This information can be saved in XML files, which are 
presented as informative documents to users. 

− The analysis of the physical model of information can 
easily produce the XML-Schema. The XML language - 
which is inherently object oriented - becomes a 
standard, and as a result object oriented analysis tools 
will soon provide the ability to export the model of 
information in an XML-Schema file, which can be 
used as input to our system.  
 

2.5. Information flow 
 
The general architecture of PANORAMA is presented in 
Figure 1. The flow of information among the various 
system components is depicted in the following steps: 

1) The administrator of the Video-Information Model, 
analyses the information structure by describing the 
different entities and relationships using XML-Schema.  

2) The X-Database interface receives the XML 
document created into step 1 (XML-Schema is also an 
XML document) and generates SQL commands to create 
the database. 
3) The annotator provides descriptions of the programs’ 
contents and generates an XML document containing 
content information for each video. 
4, 5) The media-administrator matches the digitized 
program descriptions with real media or media copies and 
adds all the media information related to each audiovisual 
object. The administrator inserts, updates, deletes and 



selects information from the database (step 4) and stores 
the digitized video files into the database (step 5) 

 
Figure 1. Short description of the system 

 
6) The end-user can query the database through a web-
based interface. The appropriate XML documents are sent 
to the database interface. 
7,8) The X-Database interface receives the XML 
document created during steps 4 and 6 and generates a set 
of SQL commands. It retrieves the query results and 
constructs an XML-Reply document, which is sent either 
to the media administrator  (step 7) or to the end-user (step 
8). 
 

3. THE X-DATABASE (XML TO RELATIONAL) 
COMPONENT  

 
The X-Database component consists of two parts. The first 
part is responsible for parsing XML-Schema documents 
and collecting information on the structure of XML 
documents that follow this schema definition. The second 
part parses XML documents and constructs the 
appropriate SQL commands that are processed by the 
database. It also takes database results and formulates 
valid XML documents as reply to user queries. 
 
3.1. The Database structure 
 
XML’s object oriented nature offers great advantages in 
describing information structure in a more comprehensible 
way. However, object oriented features like element 
nesting and inheritance are not supported in relational 
databases. Therefore, the database interface must be 
adapted to support such features, thus allowing users to 
access the database contents having in mind the structure 
of video information entities and not the structure of the 
database tables. 
 

The following example describes a typical case of 
inheritance in XML. Entities “Video_Tape” and “DVD” 

are declared as extensions of entity “Medium” so they 
inherit all the attributes and elements of Medium in 
addition to their own attributes and elements. A “Program” 
entity makes a reference to the “Medium” it is stored in, 
but the referred id may be the id of a Video_Tape or a 
DVD.  
 

In order to support this in the relational database 
schema a table named OBJECTIDS is created that keeps 
record of the id and type of each element that may inherit 
or be inherited. A group of triggers certifies that a 
reference to children elements through their parent’s name 
is stored correctly as a reference to the children element in 
the database. 
 

To give an example of XML nesting, an audiovisual 
object stores its information into 34 different tables. As a 
result, an attempt to insert an audiovisual object into the 
relational database evokes 34 insert SQL commands, 
which are executed recursively into the database. 
 
3.2. Converting XML commands to SQL commands 
 
During the creation of the XML-Schema all the physical 
relations among the various entities were expressed as 
relations of containment or reference among the respective 
complex types. During the database creation process all 
the elements of the XML-Schema are mapped into 
database tables and constraints.  
 

Insert, update, delete or select XML documents result 
in a set of insert, update, delete or select queries to the 
database. A correct set of constraints, both database and 
programming ones, guarantee the integrity of the database 
into the aforementioned actions. Some of the constraints 
are: 
 

a) Certain entities exist only as part of other entities. 
They appear only as sub-elements of other elements and 
cannot appear inside a DBInsert command. To give an 
example: the syntactical information is related to an 
audiovisual medium, so SyntacticDS appears only inside 
an AudioVisualDS, thus avoiding to store syntactic 
information that does not belong to any audiovisual 
medium. 

b) Certain entities can be re-used by more than one 
entity. The complex types that correspond to such entities 
must appear as sub-elements of DBInsert. When a 
complex type refers to another complex type, the latter 
must already have been inserted into the database. 

c) Certain entities contain ordered instances of other 
entities. The order in which sub-elements appear in an 
element is important hence extra information must be 
stored in the database during the XML document parsing. 

 

Local Application 
Annotator 

XML 

Local Interface 
Media - Administrator 

Web Interface 
End-User 

XML (Select) 

XML 
(Insert/Update/ 
Delete/Select) 

Video - Information  
Model 

X-Database COM 
XML (Reply) 

SQL 
Commands/Results 

XML-Schema 

Digitized media 

1 

3 

2 
4 

5 

6 

7 

8 

Relational 
Database 



d) One or more commands can be send into the X-
database module at the same time. These commands 
usually evoke a reply from the database, so the DBReply 
module must be able to group the database replies for each 
command. 
 

These constraints are incorporated into the XML-
Schema in the definition of extension elements. A pre-
parsing of the XML-Schema document gives the X-
Database module all the information needed for the 
parsing of the XML documents. 
 

The four database commands supported by the module 
are: 
1) Insert: One or more top-level complex types can be 
found inside a DBInsert element. The parsing starts from 
the top-level element and continues recursively to all sub-
elements, thus generating and executing a series of SQL 
INSERT statements. 
2) Update: A DBUpdate element contains one or more 
top-level elements. All elements having a negative id are 
inserted. The rest of the elements, are updated.  
3) Delete: Only top-level complex types with attribute 
“id”  can be found inside a DELETE element. The 
database cascade deletes the information of all sub-
elements. 
4) Select: 
A DBSelect element has three parts: 
− A where part that contains the filter of the Select 

query.  
− A from part where the elements that contain the 

attributes to be filtered appear. 
− A return part that contains the element(s) to be 

returned.  
The whole element is returned after a select statement.  
 

The value of where attribute is the “where_clause” of 
our query. From the nested structure of elements inside the 
“from” part of the command, the parser is able to create all 
the “join conditions”  among the tables that take part in 
the query. From the elements that appear in the “from” and 
“return” elements the “list_of_associated_tables” is 
generated. 
 

The return element has a reference to the complex 
type(s) that must be selected. These references give the 
name of the table that corresponds to the “return_entity” . 
So the first query that is send to the database has the 
following structure: 
 

SELECT return_entity.id  FROM 
 “return_entity”, ”list_of_associated_tables”  
WHERE (“join_conditions”)  
AND (“where clause”) 

 
This query returns a list of ids of the entity to be 

returned. Using these ids a set of recursive select 
commands is addressed to the database to obtain all the 
information of the entities to be returned. The DBReply 
element contains the entities in their complete structure. 
 

4. EXPERIMENTAL EVALUATION  
 
In order to test the reliability but also the scalability of the 
X-Database module a series of test transactions is 
performed to the database. The system has been 
experimentally tested using a simple interface, where 
XML documents are inserted as text and the resulting 
XML file is displayed in a web browser. The simulation 
ran on a Pentium II computer with 128MBytes of RAM 
and an IDE HD. 
 

In order to test the schema complexity we measured the 
number of tables created, the number of foreign key and 
triggers that guarantee the schema integrity, as well as the 
database creation time for XML-Schema files of different 
complexity. For the complete XML-Schema (68 
complexTypes, 18 inherited elements) 140 tables, 77 
triggers and 260 foreign key constraints are generated in 
52 seconds. 
 

Attempting to measure the insertion and selection time, 
we found that both values increase linearly to the number 
of elements inserted given that all the elements are of the 
same type. When elements of different type are inserted, 
the number of consequent insertions differs and as a 
consequence the relation to time is not linear. 
 

5. RELATED WORK  
 
Several research and commercial systems provide 
automatic indexing and querying of visual contents ([5], 
[6]). Such platforms provide solutions on the audiovisual 
content annotating and indexing, but unfortunately are not 
available for web applications. Nonetheless, they can be 
used as a basis for extracting information from the 
audiovisual sources that can be wrapped in our XML 
model. 
 

The X-Database interface offers a fairly simple query 
mechanism combining the default structure of XML 
documents with the simplicity of SQL "Select" commands. 
Most of the query categories proposed in [7] could be 
performed using our DBSelect element, such as Simple 
Visual Feature Query, Feature Combination Query, Query 
by Example etc.  
 

Compared to the interfaces used by commercial 
relational database management systems ([8], [9], [10], 



[11]), X-Database provides a complete solution in XML 
documents manipulation. All the above systems do not 
provide the ability to create the database schema based on 
the XML-Schema and moreover to use the same XML-
schema to validate all the XML documents and commands 
that are forwarded to the database. 
 

6. CONCLUSION AND FURTHER WORK  
 
PANORAMA is a platform that handles digitised video 
data and meta-information. In this platform different 
applications access a common data repository and 
exchange data in XML format. The structure of XML 
information is defined in an XML-Schema document that 
guarantees the validity of transferred documents. The same 
XML-Schema has been used to build the database where 
information is stored.  
 

The X-Database module works as an interface between 
the database and the co-operating applications. The 
applications interact with the relational database system 
only using XML documents without taking into account 
the underlying database schema. This provides a simple 
and database independent mechanism for storing and 
retrieving XML documents’ information into relational 
DBMSs. Although the mechanism is customised for video 
meta-information, any information model can be 
supported. Fault tolerance is achieved by adding 
appropriate control procedures to the database, such as 
triggers that check the validity of inserted values, 
reference constraints that guarantee cascade removal of an 
object (and all the objects it contains) from the database. 
The last is important since information for an object may 
be stored in more than one table in our database. 
 
Further research will focus into retrieval and advanced 
query tasks. The retrieval process can be easily accelerated 
if the appropriate indexes are created. For this task the 
current XML-Schema can be enriched to precisely define 
the information that must be indexed, or even more the 
information entities on which to perform similarity search 
etc. Finding an efficient notation to describe such 
requirements in XML-Schema is crucial in creating a 
database schema that will serve advanced retrieval needs. 

7. REFERENCES 
 
[1] “XML Schema Part 0: Primer,” W3C Working Draft, 
Sept. 2000 
(http://www.w3.org/TR/xmlschema-0) 
[2]  G. Akrivas, S. Ioannou, E. Karakoulakis, K. 
Karpouzis, Y. Avrithis, A. Delopoulos, S. Kollias, I. 
Varlamis, M. Vazirgiannis, An Intelligent System for 
Archiving and Retrieval of Audiovisual Material Based on 
the MPEG-7 Description Schemes, WSES/IEEE 
Multiconference (2001). 
[3] ISO/IEC JTC1/SC29/WG11, “MPEG-7 Overview (v. 
1.0),” Doc. N3158, Dec. 1999. 
[4] R. Jain, A. Hampapur: Metadata in Video Databases. 
SIGMOD Record 23(4): 27-33 (1994) 
[5] M. Flickner et al, Query by Image and Video Content: 
The QBIC System, IEEE Computer Vol. 28, No. 9, 
September 1995. 
[6] A. Gupta, Visual Information Retrieval Technology, A 
VIRAGE Perspective white paper, Virage, 1995. 
[7] Y. Alp Aslandogan and Clement T. Yu, “Techniques 
and Systems for Image and Video Retrieval”, IEEE 
Transactions on Knowledge and Data Engineering, vol. 
11, no. 1, Jan.-Feb. 1999. 
[8] IBM’s DB2 extender for XML  
(http://www-4.ibm.com/software/data/db2/ 
extenders/xmlext.html) 
[9] Microsoft SQL Server XML support,  
(http://msdn.microsoft.com/msdnmag/issues/ 
0300/sql/sql.asp) 
[10] Informix and XML, 
(http://www.informix.com/xml/) 
[11] Steve Muench, Using XML and Relational Databases 
for Internet Applications, Oracle Corporation 
(http://technet.oracle.com/tech/xml/info/htdocs/ 
relational/index.htm#ID795) 


