
DISTRIBUTED VIRTUAL REALITY AUTHORING
INTERFACES FOR THE WWW

I. Varlamis, M. Vazirgiannis I. Lazaridis

Dept of Informatics, Athens University
of Economics & Business, Patision 76,

10434, Athens, HELLAS

Dept. of Information and Computer
Science, University of California,

Irvine
ABSTRACT

Electronic commerce is emerging as an important domain of
integration and enhancement of more specific technologies and
research efforts. It is clear that the role of WWW in this context is
a cornerstone as the medium of information dissemination. A trend
in e-commerce is to provide to the potential customers the ability
to view and “try” the products in a persuasive 3D representation.
We have designed and implemented a system for WWW enabled
interactive design & visualization of a room, definition of pieces
of furniture and placement of domestic appliances. The system
conveys a generic approach for distributed creation and update of
virtual worlds as means of interaction and information
dissemination in an e-commerce context.

1. INTRODUCTION
Electronic commerce is emerging as a domain of integration and
enhancement of more specific technologies and research efforts. It
is clear that Web’s role in this context is a cornerstone as the
medium of information dissemination. A trend in e-commerce is to
provide to the potential customers the ability to view and “try” the
products in a persuasive 3D representation. Moreover the users
want to be able to view the products in their own environment.

We have designed and implemented a system for WWW enabled
interactive design of a room, definition of pieces of furniture as
well as placement of domestic appliances. The user may define for
each object, its size, position, and also the inter-object spatial
relationships. Certain integrity constraints are checked during this
definition. The system generates on the fly a VRML representation
of the specifications and renders it at the client. The user alters and
visualizes the world and may save it for further reference.

The system architecture follows the 3-tier scheme where the client
is independent of the specific scheme and architecture of the
database that resides on the server. The database server contains
information on the various products, along with links to the
VRML descriptions of these products. The application server
accesses the database contents, to serve the clients’ requests. In the
client side, a Java applet offers a highly interactive interface,
communicating with the application server to provide the user
with on-the-fly VRML-based 3D visualization. The VRML based
room description, and all relevant files (images and VRML
prototypes of furniture items and appliances of the room), are sent
to the user in a compressed format which they user may save on
his machines. Thus the Java security constraints are overcome
safely. The system conveys a generic approach for distributed
creation and update of virtual worlds as means of interaction and
information dissemination in an e-commerce context.

2. Related Work
There are several tools, which produce enormous code for simple
geometry (using more complex geometry –IndexedFaceSet- to
define it with thousands of 3Dcoordinates, such as AC3D). In [4],
SCORE, a distributed object oriented system for 3D real time
visualization is presented. Though the system lacks methodology
and a clear model for spatial navigation.

In [1], the concept of virtual environment (VE) is introduced. The
main feature this system is its navigation means, which is spatial,
and the interactivity facilities. VEs are described through three
fundamental elements: context (for structuring the environment),
object (which can be passive, reactive or active and movable or
non-movable), and users that can activate objects, collect or move
them. In [2] an interesting approach is presented for uniform
modeling of geometry and behavior of a 3D graphics and
animation framework. More specifically the authors specify
separately geometry and behavior using corresponding nodes
organized in two separate directed acyclic graphs, the geometry
and the behavior graph. Moreover they provide rendering
independent graphics objects that can be visualized by geometry
nodes constrained by time and event-rated behavior nodes and
finally provide high level 3D widget nodes that combine geometry
and behavior nodes.

In [6] an approach for specifying virtual worlds is described.
Spatiotemporal objects as integrated entities and thus apart from
modeling their geometrical and positional characteristics (in an
open and application-independent format), it also demonstrates
how to relate them to any non-spatial attributes. Temporal
evolution of objects is also taken into account. The requirement
for maintaining a continuous view of an object through time is
satisfied by linking two successive and explicitly stored states.
Then, the state of an object at any point can be extracted by
interpolating into the period formed by these states.

In [5] an integrated effort for building 3D animations is presented.
The system provides a small set of modeling primitives, namely
the graphical objects, their properties and the callbacks. The
graphical objects are used for constructing scenes, the properties
are time-variant and are used for animating various aspects of a
scene while the callbacks are the primitives used to handle
interaction.

3. MODEL
The VR-Shop data model aims at representation of: i. entities
present in a room, ii. inter-entity spatial relationships, and iii.
spatial constraints so as to produce a coherent, presentable world.
Essentially, we used our experience in generalized spatiotemporal
modeling [3] to address the simpler issue of developing an

0-7803-6536-4/00/$10.00 (C) 2000 IEEE

authoring tool for rooms.

3.1 VR-SHOP Spatial Data Model
The VR-Shop Data model includes objects, spatial relationships
between objects and constraints stemming from the real world
limitations that the model must address. There are five different
object classes. A vector of dimensions fully defines an instance of
a class (i.e. actual object). Each object is also placed in the room
by an additional vector of placement data.

3.1.1 Size and Placement Data
In Table 1 the reader may see the classes of objects along with
their size-related attributes.

Object-Type Attributes
Room Length, Width, Height
Door Width, Height
Window Width, Height
Furniture Item Length, Width, Height
Appliance Length, Width, Height

Table 1. Size related attributes of object classes

Another issue is the placement of the objects in the context of the
room. We aim at the definition of a set of primitives that define in
a declarative way the relative placement of objects. In Table 2 we
give the placement attributes describing the inter-object spatial
relationship within the room spatial composition.

Object-Type Attributes
Room <none>
Door OnWallName, Distance,

FromWallName
Window OnWallName, Distance,

FromWallName, HeightFromFloor
Furniture
Item

Distance1, FromWall1, Distance2,
FromWall2, OrientationAngle,
HeightChoice, [FromItem | Height]

Domestic
Appliance

Distance1, FromWall1, Distance2,
FromWall2, OrientationAngle,
HeightChoice, [FromItem | Height]

Table 2. Placement-related attributes of object classes

By employing a wall identifier and a value that represents distance
from the wall in consideration we define the position of Doors and
Windows. For window objects, the height with reference to the
floor is also required. Furniture Items and Domestic Appliances
require the following attributes for their full specification:

• Position of their geometric center’s projection on the
ground plan (two distances from perpendicular walls).

• Orientation Angle, a rotation of the object around a
vertical axis passing through the object’s geometric
center

• Height information: the object is at a specific height, or
“on the floor” or “from the ceiling” or “on” another item.

3.1.2 Constraints
The use of high-level declarative predicates defined in the VR-
Shop data model, provides expressive power but allows for
inconsistencies. Thus we have to consider the related integrity
constraints. The constraints arise both from the geometric
configuration of the objects and/or from the attached semantics
(i.e. some objects are pieces of furniture while others are

appliances).

Explicit referential constraints we check in our design are:

1. All object dimensions must be less or equal than the
dimensions of the room.

2. The physical dimensions and placement of objects must
not allow part of them to be outside the room

3. The intersection of any pair of objects must be either
empty or at most of a surface. Objects cannot intrude into
one another, since they are solids.

4. Each object must have at least one common surface with
another object or with the room (no objects suspended in
mid-air).

5. Furniture items may be placed on other furniture items,
but not on domestic appliances.

6. Upon removal of an object, all objects that are “on” that
object must revert to a consistent position. Our solution
was to place all such objects “on the floor”.

7. Cyclic placements of objects “on” each other are not
allowed.

The above list of constraints is by no means complete. Some
semantic constraints have been avoided while others (#5) have
been included. We might have disallowed the placement of certain
types of device (“Refrigerator”) on others (“VCR”). The freedom
to perform such actions is left to the user, who will hopefully take
care not to permit such inconsistencies.

4. AUTHORING TOOL
The aim is the retrieval of objects and their placement in a virtual
room. The authoring tool is used to specify the room (dimensions,
colors etc), and the objects in the room (size and placement)

The specification of the room is a three-step process: i. definition
of the room shape, dimensions and color, ii. placement of doors
and windows and iii. placement of any other object inside the
room.

In the current version of the room editor, the room is rectangular;
thus three parameters (length, width and height) are required. The
four walls are identified as front, left, back and right.

Doors and windows have size (width and height). Their placement
is defined by the wall they are on and the distance from another
wall (plus distance from floor for windows). For example:
“window W1 is on the left wall and 5m from the front wall”.

The list of the available objects (furniture/appliances) is read from
the database. Dimensions (length, width, and height) must be
defined for pieces of furniture but are fixed for domestic
appliances (a given TV model has known dimensions). The
position of each object is specified using a set of parameters:

• Its minimum distance from a pair of adjacent walls.
• Its rotation around the vertical axis.
• Its position along the vertical axis.

The position of an object in a room is easily defined via the
minimum distance from the nearest pair of walls. Thus we can
easily say that an object is adjacent to a wall (minimum distance
0).

We allow rotation of objects only around the vertical axis since it
is typical for furniture or appliances to be rotated around other

0-7803-6536-4/00/$10.00 (C) 2000 IEEE

axes. To define the position of an object along the vertical axis, we
provide 4 “level” options: i. on floor, ii. over another object, iii. at
a height from floor, and iv. from the ceiling.

The room model previously described is complete enough to
describe a usual room with its contents, but manually inputting all
the necessary parameters is tiresome especially for an average Web
user. Thus we added a 2D interactive space, which is both
visualization and working area (see Figure 1).

One can set the room dimensions by dragging a rectangle in the
drawing area. He can place doors, windows and other objects
simply by clicking somewhere in the drawing area. Feedback
from users indicates that the 2D interface is very useful as an
overview method. The ability to precisely specify parameters with
precision is retained but the 2D interface allows for the quick
creation and visualization of rooms.

During the design phase, the user is able, at any time, to preview
the room’s state in a 3D VRML representation. This 3D preview is
very helpful, both as a motivating factor (the user sees what he
builds) and as a validation mechanism for possible design errors.

Figure 1. The 2D interface for interactive placement of
objects in the room

5. Dynamic distributed VRML generation
The central idea of the proposed system is the provision of an
authoring tool for distributed creation of 3D worlds that can be
used across the WWW. This tool must integrate a database that
contains information on available appliances. The generation of
the VRML files is done either in the user’s browser or in the
server. The functionality of the three-tier architecture is presented
below.

5.1 Room authoring tool
The room-authoring tool has to be available on the web. Thus we
are concerned about the amount of data transferred across the
network, security factors, friendliness and responsiveness of the
interface etc.

A requirement for a web-based application is to limit the data size
transferred per transaction. In our case only the parameters needed
for the creation of the room rather than actual VRML code. The
VRML file is then created locally at the user’s machine.

The use of Java on the client side was a simple way to create the

functionality we wanted for a web-based tool. An added incentive
was Java’s interoperability with VRML. For fully exploiting the
advantages of the Java platform in terms of architecture
distribution, we used a three-tier architecture with an applet in the
user browser, a Java application running on the server and a
database server that communicates only with the application.

Figure 2. Room authoring tool architecture.

Before explaining in more technical terms the dynamic generation
of the VRML world either in the server or the client it would be
reasonable to describe the way this authoring tool works, as it is
illustrated in Figure 2. The various tasks performed can be divided
into two groups: i. interaction between the user and the application
and ii. communication between the application and the database.

5.1.1 User-application communication
Interaction between the user and the application takes place in
three distinct cases:

• When the user describes his room through the user-interface
using both the 2D drawing area and the parameters input
boxes. (step 1).

• Whenever the user selects to preview the room he designs
and a 3D-visualization appears in his browser.

• When the user decides to store the room he designed in his
local machine (steps 6 and 7).

In the first case the Java applet manages the user interface and
input (see Figure 1). The application retrieves from the database
all available appliances that can be placed in the room.

In the last two cases the main action that takes place is the creation
of the VRML representation of the world. Although the cases look
similar, the processing is completely different. In the case of the
3D preview all the processing is performed in the client machine,
by the applet. When the user selects a 3D preview, the applet
generates a VRML string and feeds it to the VRML browser. The
result can be seen in Figure 3.

When the user asks for a 3D preview no data is transferred
between the client and the server. All processing is done in the
client. Thus, the 3D-preview process (which is quite common)
does not incur any communication overhead.

Whenever the user requests to save the world locally, a file
creation and packing process takes place in the server. A walk-
around method is used to actually send the file to the client
machine. The difference to the 3D-preview case is that the main

User

Application

Database
(objects
table)

VRML
files

Links to
VRML files

fCreate
VRML

iStorage

gVisualize
VRML code

eRetrieval

c2-D
description

and design

dModel
retrieval
requestha Request to

store world

Applet hb Passing
parameters
vector

0-7803-6536-4/00/$10.00 (C) 2000 IEEE

VRML file is temporarily created in the server and sent to the
user. Only a vector of parameters is sent to the server (step 6b)
where a file is created and along with all the necessary image and
VRML files is sent to the user (step 7). This process happens only
once, when the user finishes the design of the room; so the amount
of data transferred through the whole authoring process is greatly
reduced.

Figure 3. The visualization of the room during authoring

Communication between the application and the database occurs
only for requesting the objects that are available for placement and
the links to the relevant VRML files (steps 2 and 3).

5.1.2 Local storage of the produced world
An essential requirement in the creation of an authoring tool is the
ability to store the result in a persistent format. In our case we also
needed to store it locally, which is difficult because of the
distributed nature of the application and the security constraints of
Java applets. We created a multi-threaded server application that
receives clients’ requests. Whenever a user connects to our server
a new thread of the application is spawned. When the user decides
to store the final version of the room, all user-specified parameters
are sent to the server via a simple protocol. The server-side Java
application creates a VRML file, instantiating essentially a room
from the user input. This file, other necessary VRML PROTO files
and images are packed into a zip file. The only thing passed to the
client (applet) is this file’s URL address. The applet then initiates
the download procedure. All this is hidden from the user who only
gets a familiar “Save As” dialog.

When the user closes the connection, the server thread servicing
this connection deletes the zip file from the server and exits. The
storage process is illustrated in Figure 4.

Figure 4. The “world storage” process

6. CONCLUSIONS
In the near past, efforts have been made towards the creation of
environments that enable easier access to 3D visualization. There
is a strong requirement for frameworks that fulfil such
requirements even if the covered area is limited. Our effort could
be classified in this category.

We have designed and implemented a system for WWW enabled
interactive design of a room, definition of pieces of furniture as
well as placement of domestic appliances. The user may define for
each object, its size, position, and also the inter-object spatial
relationships. Certain integrity constraints are checked during this
definition. The system generates on the fly a VRML representation
of the specifications and renders it at the client. The user alters and
visualizes the world and may save it for further reference.

The contributions of our work are summarized in the following:

¾ declarative authoring model for creating virtual worlds
putting emphasis on 3D spatial relationships and related
spatial integrity constraints

¾ dynamic on the fly creation and modification of virtual reality
worlds in a distributed environment.

¾ a generic, platform-independent approach for storage at the
client site without violating the security aspects of Java

Further work will focus on extending the room model towards a
generic approach for interactive 3D worlds. This effort will define
interactive spatiotemporal scenarios in terms of complex 3D
objects (any complex object can be defined through a set of
elementary ones connected via a set of spatial relationships) and
ECA-like rules that will provide a rich set of possible actions and
ways to combine in them into fully-fledged interactive scenarios.

REFERENCES
[1] A. Diaz and R. Melster. "Patterns for modeling behavior in

virtual environment applications", Second Workshop on
Hypermedia Development: design patterns in hypermedia (in
conjunction with Hypertext 99). Darmstadt, Germany,
February 1999.

[2] J. Dollner and K. Hinrics, “Object-oriented 3D modeling,
animation and interaction”, in The Journal of Visualization
and Computer Animation, vol. 8:33-64, 1997.

[3] M. Erwig, R. H. Gueting, M. Schneider, M. Vazirgiannis,
"Spatio-Temporal Data Types: An Approach to Modeling and
Querying Moving Objects in Databases", GeoInformatica
Journal, Kluwer Publishers, to appear, 1999.

[4] R. Melster, A. Diaz and B. Groth. "SCORE - The virtual
museum, development of a distributed, object-oriented
system for 3D real-time visualization". Technical report
1998-15, TU Berlin, Germany. October 1998.

[5] Marc Najork, Mark Brown , “Obliq-3d: A high Level, Fast
Turnaround 3D Animation System”, , IEEE Transactions on
Visualization and Computer Graphics, vol.1, no 2, June
1995,

[6] A. Vakaloudis, B. Theodoulidis. "The storage and querying
of 3D objects for the dynamic composition of VRML
worlds". Chorochronos Workshop, Aalborg, Denmark. June
19 - 20, 1998.

Save
request

Send
parameters
to server

Create
VRML

file

Create zip
file

Download
Zip file

Close
connection

Delete zip
file

Thread exits

0-7803-6536-4/00/$10.00 (C) 2000 IEEE

	HTML Paper:

